
Trillion-Tensor: Trillion-Scale CP Tensor Decomposition

Zeliang Zhang1 , Xiao-Yang Liu2 , Pan Zhou1

1Huazhong Uniersity of Science and Technology
2Department of Electrical Engineering, Columbia University, USA

u201813780@hust.edu.cn, xl2427@columbia.edu, panzhou@hust.edu.cn

Abstract

Due to the storage limitation, tensors with bil-
lions or trillions of nonzero elements cannot be
loaded into the main memory. Existing tensor
decomposition methods only support billion-
scale tensors. In this paper, we implement
a compression-based algorithm trillion-tensor
for trillion-scale (number of elements) CP ten-
sor decomposition by trading computation for
storage. We make full use of the parallelism
of tensor operations to accelerate the proposed
trillion-tensor scheme on CPUs and GPUs, re-
spectively. In our experiments, we test ten-
sors ranging from million-scale to trillion-scale
and obtain a relatively low mean squared er-
ror. Comparing to the baseline method PARA-
COMP, trillion-tensor supports 8, 000 larger
tensors and a speedup up to 6.95×.

1 Introduction
Real-world big data are naturally modeled as a multi-
dimensional array, called a tensor. Examples include a
time-evolving social network, knowledge base and web
data. Tensor decomposition is the basis of many ma-
chine learning applications including graphic analysis,
image classification, data mining, etc. There are two
major tensor decomposition models, CP tensor decom-
position and Tucker tensor decomposition.

In recent years, the size of tensors becomes increas-
ingly large, approaching millions to trillions of nonzero
elements. Due to the limitation of the main mem-
ory, both CP and Tucker tensor decomposition algo-
rithms are impractical for large-scale tensors. To address
this problem, there have been proposed many adaptive
methods for large-scale tensor decomposition, including
CDTF [1] and 2PCP [2] for CP tensor decomposition,
and Haten2 [3] and GigaTensor [4] for Tucker tensor de-
composition. These methods may handle tensors with
each mode up to millions. However, the input tensors
are required to be extremely sparse, where the total num-
ber of nonzero elements is up to millions. On the other
hand, the widely used tensor toolboxes Tensor Toolbox
[5] and TensorLy [6] operate in the main memory, but

Work Tensor Size

TensorLy [6] 800× 800× 800
Tensor Toolbox [5] 1, 200× 1, 200× 1, 200
PARACOMP [8] 500× 500× 500

Trillion-Tensor (Ours) 10, 000× 10, 000× 10, 000

Table 1: Comparison of supported tensor sizes. Our
proposed Trillion-Tensor supports 580× larger tensors.

cannot support large dense tensors as shown in Table
1. Compression-based algorithm is a powerful technique
to handle large scale data with a limited memory in
many research areas [7]. The PARACOMP (parallel ran-
domly compressed cubes) algorithm [8] was a promising
compression-based tensor decomposition algorithm, but
the reported size was 500× 500× 500.

There are three primary challenges with trillion-scale
tensor decomposition. 1) Designing a compression
method to process an “out-of-memory” tensor; 2) Ex-
ploring an appropriate trick to recover the permutations
and scaling of the full mode factorization matrices; and
3) implementing efficient parallel schemes both on CPUs
and GPUs, respectively.

In this paper, we explore the potential of
a compression-based algorithm and implement
trillion-tensor to support trillion-scale (number of
elements) CP tensor decomposition by trading compu-
tation for storage. We make full use of the parallelism
of tensor operations and design two efficient parallel
schemes on CPUs and GPUs, respectively. In our
experiments, we test tensors ranging from million-scale
to trillion-scale and obtain a relatively low mean squared
error. Evaluation results show that trillion-tensor sup-
ports 8, 000 larger tensors and a speedup up to 6.95×,
compared with the baseline method PARACOMP [8].

The remainder of this paper is organized as follows. In
Section 2, we describe the CP tensor decomposition al-
gorithm. Section 3 describes the proposed trillion-tensor
algorithm and the parallel schemes for CPUs and GPUs,
respectively. In Section 4, we present performance evalu-
ations in terms of reconstruction error and running time.
In Section 5, we conclude this paper.

2 Large-scale CP Tensor Decomposition

Notations: we use uppercase calligraphic letters to de-
note third-order tensors, e.g., X ∈ RI×J×K , uppercase
boldface letters to denote matrices, e.g., A ∈ RI×J .
X(n) denotes the n-mode matricization of a tensor X .
We use � to denote Khatri-Rao product.

2.1 CP Tensor Decomposition

The CP tensor decomposition factorizes a tensor into a
sum of component rank-one tensors, which can be writ-
ten in matricized forms X(1) ≈ A(C � B)T , X(2) ≈
B(C � A)T , and X(3) ≈ C(B � A)T . CP tensor de-
composition uses the Alternative Least Squares (ALS)
method to obtain the mode matrices (A,B,C).

2.2 Compression-based CP Tensor
Decomposition

PARACOMP (parallel randomly compressed cubes) [8]
is a compression-based algorithm with a potential to
support large tensor decomposition. It first uses a set
of random matrices to compress the data tensor X into
reduced-size replicas {Yp}p=1,2,...,P , then each replica Yp
is factored into mode matrices {(Ap,Bp,Cp)}p=1,2,...,P .
After proper permutation and scaling, solving a master
linear squares problem per mode will result in the full
mode loading matrices (A∗,B∗,C∗).

3 The Proposed Trillion-Tensor Scheme

3.1 Overview of Our Trillion-Tensor

The trillion-tensor algorithm mainly consists of three
stages, namely compression stage, factorization stage,
and a scaling and permutation stage, as given in Alg.1
and in Fig.1. First, a tensor X ∈ R300×300×300, con-
sisting of 27 tensor blocks Bn ∈ R100×100×100, n =
1, 2, ..., 27, is first compressed into 8 replicas Yp ∈
R50×50×50, p = 1, 2, ..., 8. Second, each replica is factored
to mode matrices independently. Thirdly, with a proper
permutation and normalization, solving a least squares
problem for each mode will result in the full mode ma-
trices (A∗,B∗,C∗). Using the factorization of the first
block B1, we get the permutation matrix Π and the scal-
ing matrix Σ. Then, we use Π and Σ to obtain the full
mode matrices (A,B,C).

3.2 Compression Stage

To compress X ∈ RI×J×K into Y ∈ RL×M×N , the
(i, j, k)-th element of Y takes the scalar form:

Ylmn =

I∑
i=1

J∑
j=1

K∑
k=1

UilVjmWknXijk, (1)

where U ∈ RI×L,V ∈ RJ×M ,W ∈ RK×N are random
matrices from the normal distribution.

In trillion-tensor, X will be compressed into P repli-
cas Yp, p = 1, 2, ..., P , P ≥ max(I−2

L−2 ,
J
M , K

N). To process
the “out-of-memory” tensor, we adopt a spliting strategy

Algorithm 1 Our Trillion-Tensor Scheme

Input: tensor X ∈ RI×J×K with rank F; dimensions of
compression replicas, L,M,N ; the first tensor block
B1 ∈ Rd1×d2d3 ; the number of replicas P ; the number
of common columns S.

Output: mode matrices (A,B,C);
1: Randomly generate matrices Up ∈ RI×L,Vp ∈

RJ×M ,Wp ∈ RK×N , p = 1, 2, .., P , and set the first
S columns the same, respectively,

2: Yp ← compress X using (Up,Vp,Wp) according to
(1), for p = 1, .., P ,

3: for p = 1 to P do
4: (Ap,Bp,Cp) ← rank-F CP decomposition of Yp,
5: (Ap,Bp,Cp) ← divide each column of

(Ap,Bp,Cp) by the maximum of the first S
rows, respectively,

6: Πp ← arg maxΠ Tr(A1(1 : S, :)TAp(1 : S, :)Π),
7: (Ap,Bp,Cp)← (ApΠ,BpΠ,CpΠ),
8: end for
9: (A∗,B∗,C∗)← solve the master linear least squares

problem (2) per mode,

10: (A
′
,B

′
,C

′
) ← rank-F CP decomposition of B1,

11: Π,Σ← match A
′

with the first d1 rows of A∗ using
the Hungarian algorithm.

12: A ← A∗ΠΣ,
13: Repeat line 11-12 for B and C, respectively,
14: return (A,B,C).

that we first split X into multiple blocks Bn ∈ Rd1×d2×d3

n = 1, 2, ..., IJK
d1d2d3

as shown for example in Fig.1. Then,
due to the block matrix multiplication, we exploit the
related components of (Up,Vp,Wp) to compress each
block Bn to replicas Yn

p , p = 1, 2, ...P . Finally, accu-
mulate them to the final replicas Yp respectively, i.e.
Yp+ = Yn

p , p = 1, 2, .., P .

3.3 Factorization Stage

On the factorization stage, each replica Yp is factored
into (Ap,Bp,Cp), p = 1, 2, .., P . Due to a property of
the Kronecker product [9], we have Ap = UT

p AΠpΣp,

p = 1, 2, ..., P . Here, we apply Hungarian algorithm [10]
to the trace maximization problem to get rid of Πp and
divide each column by its maximum of the first S rows to
get rid of Σp, where S is the number of shared columns
in the random matrices Up, p = 1, 2, ..., P . Finally, solve
a master least squares problem A1

...
AP

 =

 UT
1
...

UT
P

AΠΣ (2)

to obtain A∗ = AΠΣ, and similarly for B∗ and C∗.

3.4 Scaling and Permutations

To recover the scaling and permutations, we use the
factors (A

′
,B

′
,C

′
) of the first block B1. Because the

CP tensor decomposition is unique, we assume that

Figure 1: Overview of the proposed trillion-tensor decomposition, where the tensor X ∈ R300×300×300, the amount
P of the compression replicas Y is 8 ≥ max(300−2

50−2 , 300
50 , 300

50).

(A
′
,B

′
,C

′
) are the first d1 rows of full mode matri-

ces (A,B,C), i.e., A
′

= A∗(1 : d1, :)ΠΣ. Here,
we make the diagonal entries of the scaling matrix Σ
composed of the maximums of each column in A

′
, i.e.

Σ = diag(max(A′(:, 1)), ...,max(A′(:, F))). To obtain
the full mode matrix A, first, we divide each column of
A′ by its maximum and divide each column of A∗ by its
maximum of the first d1 rows. Second, similar to the fac-
torization stage, we apply the Hungarian algorithm [10]

to maximize Tr(A
′T
A∗(1 : d1, :)Π) and obtain the per-

mutation matrix Π. Thus, we get the full mode matrix
A = A∗ΠΣ, similarly for B and C.

In practice, we usually make the first block on this
stage, B1 ∈ Rd1×d2×d3 , to be different from that on the
compression stage in the size. And in our experiment
of the large-scale tensor decomposition, it is proved to
be effective if we set d1 6= d2 6= d3 and make the size of
the tensor block on current stage smaller than that on
the compression stage when the rank F of tensor X is
relative smaller than the size of tensor.

3.5 Optimizations

The computational complexity of the compression stage
is O(PIJK×min(L,M,N)) versus O(IJ

F) of the factor-

ization stage [8]. Huge time consumption of the com-
pression stage is the bottleneck of this algorithm with
the size of tensor increasing.

On the compression stage, operations of all tensor
blocks Bn, n = 1, 2, ..., IJK

d1d2d3
, are independent of each

other, and the respective compression result Yn
p will be

accumulated to the common replica Yp, p = 1, 2, ..., P .

There is IJK
d1d2d3

parallelism in this process. Thus, we de-
sign two parallelization schemes for efficient compression
on CPUs and GPUs, respectively.

Parallel implementation on CPUs: This scheme
advocates exploiting the property of multi-core proces-
sors on CPUs. In this scheme, we compress the tensor
block Bn, n = 1, 2, ..., IJK

d1d2d3
, in parallel on multi pro-

cesses. On each sub-process, one of tensor blocks, Bn,
will be loaded in memory and independently compressed
into sub-replicas Yn

p , p = 1, 2, ..., P , then the sub-replicas
will be accumulated to corresponding common replicas
Yp shared on the main process, p = 1, 2, ..., P .

Parallel implementation on GPUs: This scheme

advocates exploiting GPUs’ high performance in matrix
multiplication. Consider a given situation that for a
trillion-scale tensor X ∈ R10,000×10,000×10,000 composed
of tensor blocks Bn ∈ R500×500×500, n = 1, 2, ..., 8000,
there are 3 × 8, 000 times of matrix multiplication need
to be done. The huge time consumption of extra large-
scale matrix multiplication on CPUs is always unbear-
able. However, compared to CPU, GPU is more suitable
for large-scale matrix multiplication for its much greater
number of relatively unexceptional processing cores.

Thus, compared to the parallel implementation on
CPUs, this scheme differs only in the matrix compu-
tation step, in which it transfer the block Bn of each
sub-process from CPUs to GPUs and the following com-
pression steps except the accumulation will work on
GPUs. The accumulation step will first transfer Yn

p ,
p = 1, 2, ..., P to CPUs and then accumulate them to
corresponding replicas.

4 Performance Evaluations

In this section, we will provide numerical experiment
results to show the performance of our work on various
scales of tensors from one hundred million to one trillion.

We make our experiments on a server which has two
Intel(R) Xeon(R) Gold 5118 CPUs. Each of CPUs has 12
cores @2.30GHz supporting 24 hardware threads. There
is a Tesla V100 GPU which consists of 16 GB device
memory. There are 128 GB DDR4 memories on the
server. We show the mean squared error (MSE) to mea-
sure the accuracy and speedups of baseline versus opti-
mization schemes. The speedups is defined as (baseline
running time)/(optimized running time).

For each case on scales ranging from one hundred mil-
lion to one trillion, we first generate the mode matri-
ces A ∈ RI×F ,B ∈ RJ×F ,C ∈ RK×F from an inde-
pendent normal distribution to generate the huge tensor
X ∈ RI×J×K where we set I = J = K ranging from
1000 to 10000 and the rank F is set to be a constant
small value 5. On the compression stage, we set the
size of compressed tensor cubes Yp ∈ RL×M×N = 50
as same value L = M = N . The size of one tensor
block B ∈ Rd1×d2×d3 on the compression stage is set as
d1 = d2 = d3 = 500 while it is set as d1 = 50, d2 = 100
and d3 = 150 on the scaling and permutation stage. We
set P as max(I−2

L−2 ,
J
M , K

N)+10 to avoid the situation that

Figure 2: Comparison between the baseline and opti-
mized implementation.

if the CP tensor decomposition of one or a little more
compression replicas can’t converge on the factorization
stage, drop it (them) in time.

Figure 2 shows the comparison of time performance
between the baseline and the optimized versions. Com-
pared to the baseline, the optimized version on CPUs
achieves an average of 2.18× speedups with up to 2.77×
speedups, and the optimized version on GPUs achieves
an average of 4.92× speedups with up to 6.95× speedups.
For trillion-scale tensor of size 10, 000×10, 000×10, 000,
we reduce the baseline time of nearly half a day to no
more than 6 hours.

Figure 3 shows the comparison of the mean squared
error (MSE) between the baseline and the optimized ver-
sions. It can be seen that the all the MSE are increasing
as the scale increases, but all of them control the error
under the magnitude of 10−7. Comparing to the base-
line, the parallel scheme on CPUs is almost the same
with more than 2× speedups. For the parallel scheme
on GPUs, it trades just a little more loss for the signifi-
cant acceleration.

5 Conclusions
In this paper, we have proposed a trillion-tensor scheme
for CP tensor decomposition that can support trillion-
scale tensors. We provide acceleration techniques for
CPU and GPU implementations, respectively. We tested
various tensor sizes ranging from millions to trillions and
obtain a low reconstruction error. Comparing with the
baseline method PARACOMP [8], the proposed trillion-
tensor scheme achieves a maximum of 6.95× speedups
over the baseline implementation.

References
[1] Sael L. Shin, K. and U. Kang, “Fully scalable

methods for distributed tensor factorization,” IEEE

Figure 3: Comparison of reconstruction error between
the baseline and optimized implementations.

Transactions on Knowledge and Data Engineering,
pp. 100–113, 2016.

[2] Shengyu Huang K. Selçuk Candan Li, Xinsheng and
Maria Luisa Sapino, “2PCP: Two-phase cp de-
composition for billion-scale dense tensors,” IEEE
32nd International Conference on Data Engineering
(ICDE), pp. 835–846, 2016.

[3] Papalexakis E.E. Kang U. Jeon, I. and C. Falout-
sos, “Haten2: Billion-scale tensor decompositions,”
IEEE 31st International Conference on Data Engi-
neering, pp. 1047–1058, 2015.

[4] Abhay Harpale Christos Faloutsos U Kang, Evange-
los Papalexakis, “GigaTensor: Scaling tensor anal-
ysis up by 100 times algorithms and discoveries,”
kdd, 2014.

[5] Brett W. Bader, Tamara G. Kolda, et al., “Matlab
tensor toolbox version 3.1,” June 2019.

[6] Anima Anandkumar Maja Pantic Jean Kossaifi,
Yannis Panagakis, “TensorLy: Tensor learning in
python,” Journal of Machine Learning Research,
2019.

[7] Xiao-Yang Liu, Yanmin Zhu, Linghe Kong, Cong
Liu, Yu Gu, Athanasios V Vasilakos, and Min-You
Wu, “Cdc: Compressive data collection for wireless
sensor networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 26, no. 8, pp. 2188–
2197, 2014.

[8] Evangelos E. Papalexakis Nicholas D. Sidiropoulos
and Christos Faloutsos, “Parallel randomly com-
pressed cubes,” IEEE Signal Processing Magazine,
pp. 57–70, 2014.

[9] J. Brewer, “Kronecker products and matrix calculus
in system theory,” IEEE Trans. Circuits Syst., vol.
19, pp. 772–781, 1978.

[10] Harold W. Kuhn, “The hungarian method for
the assignment problem,” Naval Research Logistics
Quarterly, pp. 83–97, 1955.

