Adaptive Regularizing Tucker Decomposition for Knowledge Graph Completion

¹Quanming YAO, ^{1,2}Shimin DI, ¹Yongqi ZHANG ¹4Paradigm Inc.

²The Hong Kong University of Science and Technology

- Background
- Related Work
- Problem Formulation
- Search Algorithm
- Experiments

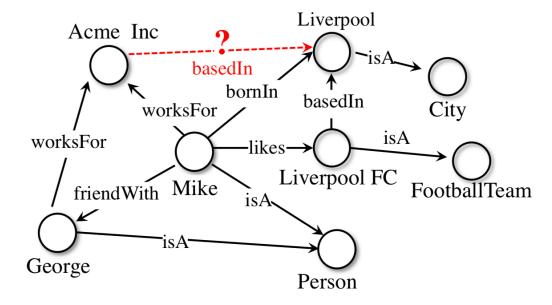
Background

Knowledge Graph

- Knowledge Graph (KG) G = (E, R)
 - Each node = an entity $e \in E$
 - Each edge = a relation $r \in R$
- Fact (i.e., triplet)
 - (head entity, relation, tail entity) or (h, r, t)
- Knowledge graph completion (KGC)
 - (Acme Inc, basedIn, ?)

Popular KGs

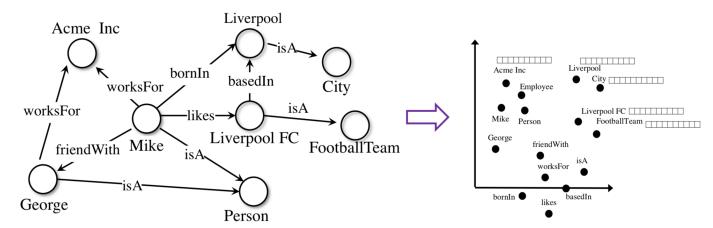
KG Instantiation



Background

Knowledge Graph Embedding

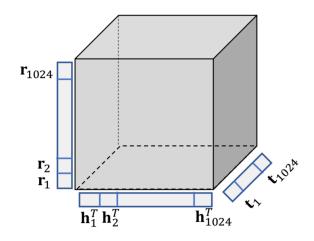
• Knowledge Graph Eembedding (KGE) approaches encode the KG G = (E, R) into low-dimensional vector spaces, such as $\mathbf{E} \in \mathbb{R}^{n_e \times d_e}$ and $\mathbf{R} \in \mathbb{R}^{n_r \times d_r}$.



- Then the scoring function (SF) $f(\mathbf{h}, \mathbf{r}, \mathbf{t})$ is utilized to measure whether a triplet (h, r, t) is real or not.
 - TransE: $f(h, r, t) = -\|\mathbf{h} + \mathbf{r} \mathbf{t}\|_{1}$

- Background
- Related Work
- Problem Formulation
- Search Algorithm
- Experiments

Related Work



Tensor Decomposition for KGC

- Among kinds of SFs, tensor decomposition models have been demonstrated their superiority due to the expressive guarantee and better empirical performance.
 - CANDECOMP/PARAFAC (CP) decomposition $f(h, r, t) = \langle h, r, t \rangle$
 - Tucker decomposition $f(h, r, t) = \mathbf{G} \times_1 \mathbf{h} \times_2 \mathbf{r} \times_3 \mathbf{t}$
- TuckER utilizes a 3-order tensor $\mathcal{X} \in \{0,1\}^{n_e \times n_d \times n_e}$ to represents a KG.
 - $X_{i,j,k} = 1$ represents that the fact (e_i, r_j, e_k) is known to exist
 - Otherwise, $X_{i,j,k} = 0$
- Then TuckER factorizes $\mathcal X$ by Tucker Decomposition

$$\mathcal{X} \approx \mathcal{G} \times_1 \mathbf{E} \times_2 \mathbf{R} \times_3 \mathbf{E}$$

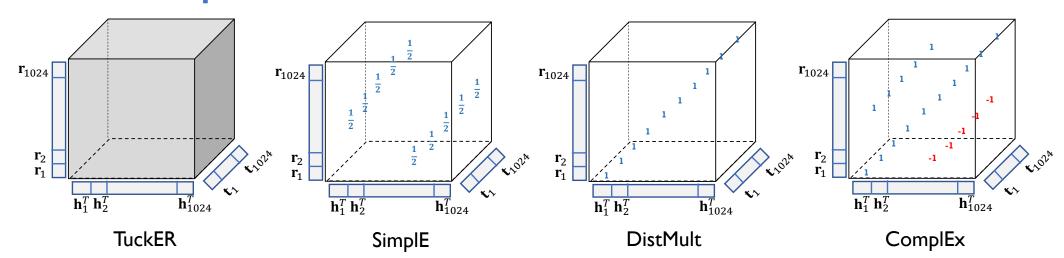
• where $G \in \mathbb{R}^{d_e \times d_r \times d_e}$ is the Tucker core tensor, $\mathbf{E} \in \mathbb{R}^{n_e \times d_e}$ and $\mathbf{R} \in \mathbb{R}^{n_r \times d_r}$ represents embeddings of entities and relations respectively.

- Background
- Related Work
- Problem Formulation
- Search Algorithm
- Experiments

Problem Formulation

Motivation

- However, G in TuckER requires cubic complexity $O(d_e^2 d_r)$, which is hard to train and easy to overfit without sufficient data.
 - But CP-based tensor decomposition models (e.g., DistMult, ComplEx, SimplE) achieve relatively good performance without introducing the dense core tensor.
- CP-based tensor decomposition models can be regarded to have a special core tensor with sparse constraint.

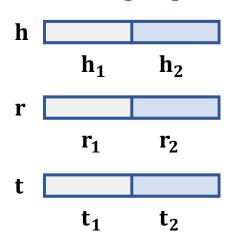


Problem Formulation

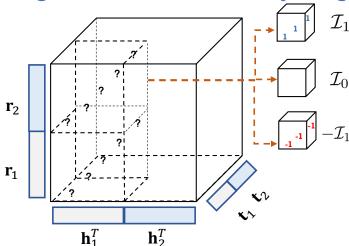
Regularizing Tucker Decomposition

- To alleviate over-parameterization issue, we propose to regularize Tucker decomposition.
 - Embedding segmentation: first divides an embedding $\mathbf{h} \in \mathbb{R}^d$ into m segmentations as $\mathbf{h} = [\mathbf{h_1}; ...; \mathbf{h_m}]$, where $\mathbf{h_i} \in \mathbb{R}^{d/m}$, and same for \mathbf{r} and \mathbf{t} .
 - Candidate diagonal tensors: $\mathbb{O} = \{T_0, T_1, T_{-1}\}.$

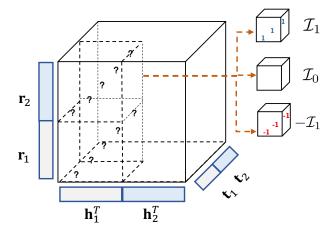
Embedding Segmentation



Regularize Core Tensor by Diagonal Tensor



Problem Formulation



Adaptive Regularizing Tucker Decomposition

• Given a tensor $\mathcal{G} \in \mathbb{R}^{d \times d \times d}$, let $\delta(\mathcal{G})$ divide \mathcal{G} into m^3 cube segmentations $\mathbb{G} = \{\mathcal{G}^{ijk}\}$ where $\mathcal{G}^{ijk} \in \mathbb{O} = \{\mathcal{T}_0, \mathcal{T}_1, \mathcal{T}_{\underline{-1}}\}$. The SF is defined as:

$$f_{\mathbb{G}}(\mathbf{h}, \mathbf{r}, \mathbf{t}) = \sum_{ijk} \mathcal{G}^{ijk} \times_1 \mathbf{h}_i \times_2 \mathbf{r}_j \times_3 \mathbf{t}_k$$

• **Search Problem**: Inspired by automated machine learning (AutoML), we propose to adaptively regularize Tucker (ART) decomposition for any given KG data S.

$$\overline{\mathbb{G}} = \arg\min_{\mathbb{G}} \sum_{\substack{(h,r,t) \in \mathbb{S}_{val}}} \mathcal{L}\left(f_{\mathbb{G}}(\bar{\mathbf{h}},\bar{\mathbf{r}},\bar{\mathbf{t}})\right)$$

$$s.\ t.\left\{\bar{\mathbf{h}},\bar{\mathbf{r}},\bar{\mathbf{t}}\right\} = \arg\min_{\substack{\{\mathbf{h},\mathbf{r},\mathbf{t}\}}} \sum_{\substack{(h,r,t) \in \mathbb{S}_{tra}}} \mathcal{L}\left(f_{\mathbb{G}}(\mathbf{h},\mathbf{r},\mathbf{t})\right)$$

• where $\mathcal{L}(\cdot)$ measures the loss of embeddings on the corresponding data.

- Background
- Related Work
- Problem Formulation
- Search Algorithm
- Experiments

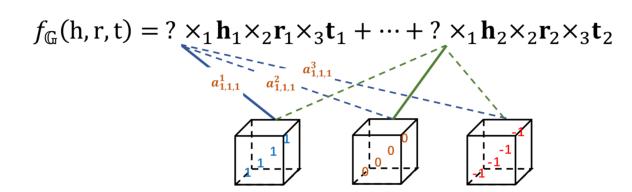
Search Algorithm

Optimization

- Optimizing search problem is a non-trivial task due to large amount of candidates.
 - For example, there are 3^{64} candidates when m=4.
- To enable an efficient search method, we first design a continuous view as:

$$\mathcal{G}^{ijk} = \sum_{o_p \in \mathbb{O}} a_{ijk}^p \cdot o_p$$

• where a_{ijk}^p denotes the weight between o_p with \mathcal{G}^{ijk} .



Search Algorithm

$$\overline{\mathbb{G}} = \arg\min_{\mathbb{G}} \sum_{(h,r,t) \in \mathbb{S}_{val}} \mathcal{L}\left(f_{\mathbb{G}}(\bar{\mathbf{h}}, \bar{\mathbf{r}}, \bar{\mathbf{t}})\right)$$

$$s. t. \{\bar{\mathbf{h}}, \bar{\mathbf{r}}, \bar{\mathbf{t}}\} = \arg\min_{\{\mathbf{h}, \mathbf{r}, \mathbf{t}\}} \sum_{(h,r,t) \in \mathbb{S}_{tra}} \mathcal{L}\left(f_{\mathbb{G}}(\mathbf{h}, \mathbf{r}, \mathbf{t})\right)$$

Optimization

- Initialize architecture weight $A^0 = [a^p_{ijk}]$ and embeddings $X^0 = \{E, R\}$;
- while not converge do
 - # optimize embeddings
 - Randomly sample a mini-batch \mathbb{B}_{tra} from \mathbb{S}_{tra} ;
 - Sample a regularized core tensor \mathbb{G} based on weight A^t ;
 - Update embeddings X as: $X^{t+1} \leftarrow X^t \eta \nabla_X L(f_{\mathbb{G}}(X^t); \mathbb{B}_{tra});$
 - # optimize architecture weight
 - Randomly sample a mini-batch \mathbb{B}_{val} from \mathbb{S}_{val} ;
 - Update weight A as: $A^{t+1} \leftarrow A^t \epsilon \nabla_A L(f_{A^t}(X^t); \mathbb{B}_{val});$
- end while
- Derive the final \mathbb{G}^* from the final A^* , and achieve embedding X^* by training \mathbb{G}^* from scratch to convergence.

- Background
- Related Work
- Problem Formulation
- Search Algorithm
- Experiments

Experiments

Link Prediction Performance

- Experiment Setup
 - KGC task: link prediction
 - Datasets:WN18,WN18RR, FB15k, FB15k237

Table 2: Comparison of the best SFs identified by ART and the state-of-the-art SFs on the link prediction task.

model	WN18		WN18RR		FB15k		FB15k237	
model	MRR	Hit@10	MRR	Hit@10	MRR	Hit@10	MRR	Hit@10
RotatE [Sun <i>et al.</i> , 2019]	0.949	95.9	0.476	57.1	0.797	88.4	0.297	48.0
ConvE [Dettmers et al., 2018]	0.943	95.6	0.430	52.0	0.657	83.1	0.325	50.1
HolEX [Xue et al., 2018]	0.938	94.9	-	-	0.800	88.6	-	-
QuatE [Zhang <i>et al.</i> , 2019]	0.950	95.9	0.488	58.2	0.833	90.0	0.357	55.3
DistMult [Wang et al., 2014]	0.821	95.2	0.443	50.7	0.817	89.5	0.349	53.7
ComplEx [Trouillon et al., 2017]	0.951	95.7	0.471	55.1	0.831	<u>90.5</u>	0.347	54.1
SimplE [Kazemi and Poole, 2018]	0.950	95.9	0.48	55.5	0.830	90.3	0.350	54.4
TuckER [Balazevic et al., 2019]	0.953	<u>95.8</u>	0.470	52.6	0.795	89.2	0.358	<u>54.4</u>
ART (ours)	0.950	95.9	0.489	<u>56.8</u>	0.840	90.8	0.360	55.0

Experiments

Efficiency

• The time cost of ART is cheaper than TuckER, while it is longer than the simplest tensor decomposition method, DistMult.

Case Study

• ART can search different G for various KGs.

data set	A	.RT	TuckER	DistMult	
	Search	Training	TUCKLIK		
WN18	5.89	4.73	25.42	1.9	
WN18RR	3.12	3.04	18.70	0.42	
FB15k	13.61	10.79	38.67	8.36	
FB15k237	5.66	3.86	21.33	2.6	

Table 3: Running time (in hours) analysis of SFs on single GPU. Table 4: The example of searched \mathbb{G} on WN18RR with m=2.

data sets	\mathcal{G}_{111}	$\overline{\mathcal{G}_{112}}$	\mathcal{G}_{121}	\mathcal{G}_{122}	\mathcal{G}_{211}	\mathcal{G}_{212}	\mathcal{G}_{221}	\mathcal{G}_{222}
WN18RR	\mathcal{I}_1	\mathcal{I}_1	$-\mathcal{I}_1$	\mathcal{I}_0	\mathcal{I}_1	$-\mathcal{I}_1$	\mathcal{I}_1	$\overline{-\mathcal{I}_1}$
FB15k237	\mathcal{I}_1	$-\mathcal{I}_1$	\mathcal{I}_1	\mathcal{I}_1	\mathcal{I}_0	$-\mathcal{I}_1$	$-\mathcal{I}_1$	\mathcal{I}_1

References

- Bordes, Antoine, et al. "Translating embeddings for modeling multi-relational data." Advances in neural information processing systems 26 (2013): 2787-2795.
- Balažević, Ivana, Carl Allen, and Timothy M. Hospedales. "Tucker: Tensor factorization for knowledge graph completion." arXiv preprint arXiv:1901.09590 (2019).
- Yang, Bishan, et al. "Embedding entities and relations for learning and inference in knowledge bases." arXiv preprint arXiv:1412.6575 (2014).
- Trouillon, Théo, et al. "Complex embeddings for simple link prediction." International Conference on Machine Learning (ICML), 2016.
- Kazemi, Seyed Mehran, and David Poole. "Simple embedding for link prediction in knowledge graphs." Advances in neural information processing systems. 2018.
- Lacroix, Timothée, Nicolas Usunier, and Guillaume Obozinski. "Canonical tensor decomposition for knowledge base completion." arXiv preprint arXiv:1806.07297 (2018).
- Yao, Quanming, et al. "Efficient Neural Architecture Search via Proximal Iterations." AAAI. 2020.

Thank you!

Q&A