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Background

Knowledge Graph
* Knowledge Graph (KG) ¢ = (E,R)

* Each node =an entity e € E
* Each edge = arelationr € R

* Fact (i.e., triplet)
* (head entity, relation, tail entity) or (h,7,t)

* Knowledge graph completion (KGC)

* (Acme Inc, basedin, ?)

kge-tutorial-ecai2020.github.io
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Background

Knowledge Graph Embedding

* Knowledge Graph Eembedding (KGE) approaches encode the KG ¢ = (E,R)
into low-dimensional vector spaces, such as E € R™*% and R € R"**%r,
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* Then the scoring function (SF) f(h,r,t) is utilized to measure whether a triplet

(h,r,t) is real or not.
* Transk: f(h,r,t) = —||lh+r—t||;

kge-tutorial-ecai2020.github.io
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* Among kinds of SFs, tensor decomposition models have been demonstrated their
superiority due to the expressive guarantee and better empirical performance.

decomposition f(h,7,t) =< h,r, t >
decomposition [ (h,7,t) = GX{hX,rx5t
* TuckER utilizes a 3-order tensor X € {0,1}"*¢*"a*"e to represents a KG.

* Xijkx = 1 represents that the fact (e;, 7}, €x) is known to exist
* Otherwise, X; j =

* Then TuckER factorizes X by Tucker Decomposition
X = QxlEXZRX3E

« where G € R%*r%de s the Tucker core tensor, E € R™*% and R € R™*% represents
embeddings of entities and relations respectively.
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Problem Formulation

Motivation

 However, G in TuckER requires cubic complexity O(d%d,.), which is hard to train
and easy to overfit without sufficient data.
* But tensor decomposition models (e.g., DistMult, ComplEx, SimplE) achieve
relatively good performance without introducing the dense core tensor.
* CP-based tensor decomposition models can be regarded to have a special core
tensor with sparse constraint.
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Problem Formulation

Regularizing Tucker Decomposition

* To alleviate over-parameterization issue, we propose to regularize Tucker
decomposition.

 Embedding segmentation: first divides an embedding h € R? into m segmentations as
h = [hy; ...; h,,],where h; € R“m, and same for r and t.

 Candidate diagonal tensors: O = {75, 77, 7_1}.

Embedding Segmentation Regularize Core Tensor by Diagonal Tensor
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Adaptive Regularizing Tucker Decomposition E — & - '%&
* Given a tensor G € R¥*%*4 et §(G) divide G into m® cube segmentations G =
{gl!"} where G € O = {7y, 71, T_1}.The SF is defined as:
fahr,© =) G hxonxst
ijk
* Search Problem: Inspired by (AutoML), we
propose to adaptively regularize Tucker (ART) decomposition for any given KG
data S.
G = ar minz L hrt
Sl (h?‘esval (fG( ))
s.t.th,r, t; = arg min L hrt
(..} S e (h7,t)EStrq o )

* where L(:) measures the loss of embeddings on the corresponding data.
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Search Algorithm

Optimization
* Optimizing search problem is a non-trivial task due to large amount of candidates.

* For example, there are 3% candidates when m = 4.

* To enable an efficient search method, we first design a continuous view as:

ijk_E P
G7" = Ak * Op
opE(CD

* where af}k denotes the weight between o), with GUk,

fG(h, I‘,t) = ? X1h1><2r1><3t1 + ce + 7 X1h2><2r2><3t2




G =arg m&n z(h,r,t)essval - (fG (h, " f))

Search Algorithm seEf=agpind  L(far0)

Optimization

« Initialize architecture weight A% = [afjk] and embeddings X° = {E, R};
* while not converge do

# optimize embeddings

* Randomly sample a mini-batch B;,, from S;,.;;

« Sample a regularized core tensor G based on weight A%;

 Update embeddings X as: X'™1 « Xt — nVyL(fc(XY); Brg);

# optimize architecture weight

* Randomly sample a mini-batch B, ; from S, ;;
« Update weight 4 as: A**1 « A* — eV, L(f 4:(XY); Bya);

* end while

* Derive the final G* from the final A%, and achieve embedding X* by training G* from scratch to
convergence.
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Experiments

Link Prediction Performance

* Experiment Setup
* KGC task: link prediction

* Datasets:VWNI8,WNI8RR, FB|5k, FB15k237

Table 2: Comparison of the best SFs identified by ART and the state-of-the-art SFs on the link prediction task.

model WNIS WNI SRR FB 15!( FB15k2§7
MRR Hit@l0 | MRR Hit@l10 | MRR Hit@l0 | MRR Hit@10
RotatE [Sun ef al., 2019] 0.949 95.9 0.476 57.1 0.797 88.4 0.297 48.0
ConvE [Dettmers et al., 2018] 0.943 95.6 0.430 52.0 0.657 83.1 0.325 50.1
HolEX [Xue et al., 2018] 0.938 94.9 - - 0.800 88.6 - -
QuatE [Zhang et al., 2019] 0.950 95.9 0.488 58.2 0.833 90.0 0.357 55.3
DistMult [Wang et al., 2014] 0.821 95.2 0.443 50.7 0.817 89.5 0.349 53.7
ComplEx [Trouillon et al., 2017] | 0.951 95.7 0471 55.1 0.831 90.5 0.347 54.1
SimplE [Kazemi and Poole, 2018] | 0.950 95.9 0.48 55.5 0.830 90.3 0.350 54.4
TuckER [Balazevic et al., 2019] 0.953 95.8 0.470 52.6 0.795 89.2 0.358 54.4
ART (ours) 0.950 95.9 0.489 56.8 0.840 90.8 0.360 55.0




Experiments

Efficiency

* The time cost of ART is cheaper than TuckER, while it is longer than the simplest
tensor decomposition method, DistMult.

Case Study
 ART can search different G for various KGs.

Table 3: Running time (in hours) analysis of SFs on single GPU. Table 4: The example of searched G on WN18RR with m = 2.

data set ART TuckER | DistMult data sets G111 Gii2 Gi21 Gi22 G211 G212 Go21 Gooo
Search | Training WNISRR 7, T, -, T, L. -7, L. -

WNIS | 580 | 473 | 2542 1.9 FBISN3T T -4 T, T I, —I, -7, T

WNI8RR 3.12 3.04 18.70 0.42

FB15k 13.61 10.79 38.67 8.36

FB15k237 5.66 3.86 21.33 2.6
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