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Background

Knowledge Graph
• Knowledge Graph (KG) 𝐺 = (𝐸, 𝑅)

• Each node = an entity 𝑒 ∈ 𝐸
• Each edge = a relation 𝑟 ∈ 𝑅

• Fact (i.e., triplet)
• (head entity, relation, tail entity) or (ℎ, 𝑟, 𝑡)

• Knowledge graph completion (KGC)
• (Acme Inc, basedIn, ?)

kge-tutorial-ecai2020.github.io 

Popular KGs

KG Instantiation



Background

Knowledge Graph Embedding
• Knowledge Graph Eembedding (KGE) approaches encode the KG 𝐺 = (𝐸, 𝑅)

into low-dimensional vector spaces, such as 𝐄 ∈ ℝ!!×#! and 𝐑 ∈ ℝ!"×#" .

• Then the scoring function (SF) 𝑓(𝐡, 𝐫, 𝐭) is utilized to measure whether a triplet
ℎ, 𝑟, 𝑡 is real or not.
• TransE: 𝑓 ℎ, 𝑟, 𝑡 = − 𝐡 + 𝐫 − 𝐭 !

kge-tutorial-ecai2020.github.io 
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Related Work

Tensor Decomposition for KGC
• Among kinds of SFs, tensor decomposition models have been demonstrated their
superiority due to the expressive guarantee and better empirical performance.
• CANDECOMP/PARAFAC (CP) decomposition 𝑓 ℎ, 𝑟, 𝑡 =< 𝐡, 𝐫, 𝐭 >
• Tucker decomposition 𝑓 ℎ, 𝑟, 𝑡 = 𝓖×𝟏𝐡×𝟐𝐫×𝟑𝐭

• TuckER utilizes a 3-order tensor 𝒳 ∈ 0,1 !!×!#×!! to represents a KG.
• 𝒳%,',( = 1 represents that the fact (𝑒%, 𝑟', 𝑒() is known to exist
• Otherwise,𝒳%,',( = 0

• Then TuckER factorizes 𝒳 by Tucker Decomposition
𝒳 ≈ 𝒢×𝟏𝐄×𝟐𝐑×𝟑𝐄

• where 𝒢 ∈ ℝ)!×)"×)! is the Tucker core tensor, 𝐄 ∈ ℝ+!×)! and 𝐑 ∈ ℝ+"×)" represents
embeddings of entities and relations respectively.
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Problem Formulation

Motivation
• However, 𝒢 in TuckER requires cubic complexity 𝑂 𝑑'(𝑑) , which is hard to train

and easy to overfit without sufficient data.
• But CP-based tensor decomposition models (e.g., DistMult, ComplEx, SimplE) achieve

relatively good performance without introducing the dense core tensor.

• CP-based tensor decomposition models can be regarded to have a special core
tensor with sparse constraint.
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Problem Formulation

Regularizing Tucker Decomposition
• To alleviate over-parameterization issue, we propose to regularize Tucker

decomposition.
• Embedding segmentation: first divides an embedding 𝐡 ∈ ℝ) into 𝑚 segmentations as
𝐡 = [𝐡𝟏; … ; 𝐡𝒎], where 𝐡𝒊 ∈ ℝ ⁄# $, and same for 𝐫 and 𝐭.

• Candidate diagonal tensors:𝕆 = 𝒯/, 𝒯!, 𝒯0! .

𝐡
𝐡𝟏 𝐡𝟐

𝐫
𝐫𝟏 𝐫𝟐

𝐭
𝐭𝟏 𝐭𝟐

Embedding Segmentation
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Problem Formulation

Adaptive Regularizing Tucker Decomposition

• Given a tensor 𝒢 ∈ ℝ#×#×#, let 𝛿 𝒢 divide 𝒢 into 𝑚- cube segmentations 𝔾 =
𝒢./0 where 𝒢./0 ∈ 𝕆 = 𝒯1, 𝒯2, 𝒯32 .The SF is defined as:

𝑓𝔾 𝐡, 𝐫, 𝐭 ='
"#$
𝒢"#$ ×%𝐡"×&𝐫#×'𝐭$

• Search Problem: Inspired by automated machine learning (AutoML), we
propose to adaptively regularize Tucker (ART) decomposition for any given KG
data 𝕊.

*𝔾 = argmin
𝔾
'

(),+,,)∈𝕊#$%
ℒ 𝑓𝔾 𝐡̅, 𝐫̅, ̅𝐭

𝑠. 𝑡. 𝐡̅, 𝐫̅, ̅𝐭 = arg min
𝐡,𝐫,𝐭

'
(),+,,)∈𝕊&'$

ℒ 𝑓𝔾 𝐡, 𝐫, 𝐭

• where ℒ E measures the loss of embeddings on the corresponding data.
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Search Algorithm

Optimization
• Optimizing search problem is a non-trivial task due to large amount of candidates.

• For example, there are 312 candidates when 𝑚 = 4.

• To enable an efficient search method, we first design a continuous view as:
𝒢./0 =A

4$∈𝕆
𝑎./0
7 C 𝑜7

• where 𝑎%'(
3 denotes the weight between 𝑜3 with 𝒢%'(.



Search Algorithm

Optimization
• Initialize architecture weight 𝑨𝟎 = [𝑎%'(

3 ] and embeddings 𝑿𝟎 = 𝑬,𝑹 ;

• while not converge do
# optimize embeddings
• Randomly sample a mini-batch 𝔹()* from 𝕊()*;
• Sample a regularized core tensor 𝔾 based on weight 𝑨𝒕;
• Update embeddings 𝑿 as:𝑿𝒕,𝟏 ← 𝑿𝒕 − 𝜂𝛻𝑿𝐿 𝑓𝔾 𝑿𝒕 ; 𝔹()* ;
# optimize architecture weight
• Randomly sample a mini-batch 𝔹/*0 from 𝕊/*0;
• Update weight 𝑨 as:𝑨𝒕,𝟏 ← 𝑨𝒕 − 𝜖𝛻𝑨𝐿 𝑓𝑨𝒕 𝑿𝒕 ; 𝔹/*0 ;

• end while
• Derive the final 𝔾∗ from the final 𝑨∗, and achieve embedding 𝑿∗ by training 𝔾∗ from scratch to

convergence.

E𝔾 = argmin
𝔾
M

(3,),()∈𝕊"#$
ℒ 𝑓𝔾 𝐡̅, Q𝐫, ̅𝐭

𝑠. 𝑡. 𝐡̅, Q𝐫, ̅𝐭 = arg min
𝐡,𝐫,𝐭

M
(3,),()∈𝕊%&#

ℒ 𝑓𝔾 𝐡, 𝐫, 𝐭
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Experiments

Link Prediction Performance
• Experiment Setup

• KGC task: link prediction
• Datasets: WN18, WN18RR, FB15k, FB15k237



Experiments

Efficiency
• The time cost of ART is cheaper than TuckER, while it is longer than the simplest

tensor decomposition method, DistMult.
Case Study
• ART can search different 𝔾 for various KGs.
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