Tensor Decomposition via Core Tensor Networks

Jianfu Zhang, Zerui Tao, Qibin Zhao, and Liqing Zhang RIKEN AIP, Shanghai Jiao Tong University, Lanzhou University

Assumptions

- The mappings of a bunch of tensors might be shared or highly correlated.
- Leverage the correlated information might be helpful for convergence

Assumptions

- Train DNN models with auxiliary samples
- With pre-trained models, infer the initialization to fast and accurate tensor decomposition

Gradient Descent

- Tensor completion:
- Tensor denoising:
- Tensor decomposition:
- Objective function:
- Gradient descent: $\mathcal{G}_i^{(k)} \leftarrow \mathcal{G}_i^{(k)} - \lambda \nabla_{\mathcal{G}_i^{(k)}} L$
- Convergence: $|L_t - L_{t-1}| < thd$

$$t_{i_1,\ldots,i_N} = \hat{t}_{i_1,\ldots,i_N} \times w_{i_1,\ldots,i_N}$$
$$t_{i_1,\ldots,i_N} = \hat{t}_{i_1,\ldots,i_N} + e_{i_1,\ldots,i_N}$$
$$\mathcal{T} \approx \mathcal{X} = \ll \mathcal{G}^{(1)}, \ldots, \mathcal{G}^{(N)} \gg$$
$$L = \frac{1}{M} \sum_{i=1}^M \|\mathcal{W}_i * (\mathcal{T}_i - \mathcal{X}_i)\|_F^2$$

Algorithm 1 Gradient Descent for Tensor Decomposition.

Require: Input data $\{\mathcal{T}_1, \ldots, \mathcal{T}_M\}$. **Ensure:** Model parameters $\{\mathcal{G}_i^{(1)}, \ldots, \mathcal{G}_i^{(N)}\}_{i=1}^M$. 1: Randomly initialize $\{\mathcal{G}_i^{(1)}, \ldots, \mathcal{G}_i^{(N)}\}_{i=1}^M$. 2: while Not converged do 3: Calculate loss function *L* based on Eq. 5. 4: Update $\{\mathcal{G}_i^{(1)}, \ldots, \mathcal{G}_i^{(N)}\}_{i=1}^M$ based on Eq. 6. 5: end while

Core Tensor Network

- $f(\theta^{(k)}, \mathcal{T})$: (main core tensor) The function representation for the network to learn the k-th core tensor with network parameter θ
- Learn the function with multi-layer perceptron
- Combine bias core tensor:

 $\mathcal{G}_i^{(k)} = f(\theta^{(k)}, \mathcal{T}_i) + \mathcal{B}_i^{(k)}$

Gradient Descent for Core Tensor Networks

- Initialize the core tensors with random projections of the input tensors
- Main core tensors share the same model parameter for all the input tensors

$$\theta^{(k)} \leftarrow \theta^{(k)} - \lambda \nabla_{\theta^{(k)}} L, \mathcal{B}_i^{(k)} \leftarrow \mathcal{B}_i^{(k)} - \lambda \nabla_{\mathcal{B}_i^{(k)}} L,$$

Algorithm 2 Gradient Descent for Core Tensor Networks. **Require:** Input data $\{\mathcal{T}_1, \ldots, \mathcal{T}_M\}$. **Ensure:** Model parameters $\{\theta^{(1)}, \ldots, \theta^{(N)}\}$. **Ensure:** Model parameters $\{\mathcal{B}_i^{(1)}, \ldots, \mathcal{B}_i^{(N)}\}_{i=1}^M$. 1: Randomly initialize $\{\theta^{(1)}, \ldots, \theta^{(N)}\}$. 2: Initialize $\{\mathcal{B}_i^{(1)}, \ldots, \mathcal{B}_i^{(N)}\}_{i=1}^M$ with zeros. 3: while Not converged do Calculate loss function L based on Eq. 5. 4: Update $\theta^{(k)}, \{\mathcal{B}_i^{(k)}\}_{i=1}^M$ for all k based on Eq. 6. 5: 6: end while

Core Tensor Network with Meta-Learning

Algorithm 3 Transfer Learning for Core Tensor Networks.

Require: Training data $\{\mathcal{T}'_1, \ldots, \mathcal{T}'_{M'}\}$. **Require:** Test data $\{\mathcal{T}_1, \ldots, \mathcal{T}_M\}$. **Ensure:** Model parameters $\{\theta^{(1)}, \ldots, \theta^{(N)}\}$. **Ensure:** Model parameters $\{\mathcal{B}_i^{(1)}, \ldots, \mathcal{B}_i^{(N)}\}_{i=1}^M$. 1: Randomly initialize $\{\theta^{(1)}, \ldots, \theta^{(N)}\}$. 2: for *iter* in $1, \ldots, iter_{max}$ do Sample a batch $\{\mathcal{T}'_{b_1}, \ldots, \mathcal{T}'_{b_m}\}$ from training set. 3: Initialize $\{\mathcal{B}_i^{(1)}, \ldots, \mathcal{B}_i^{(N)}\}_{i=1}^M$ with zeros. 4: for p in $1, \ldots, \gamma$ do 5: Calculate L for $\{\mathcal{T}'_{b_1}, \ldots, \mathcal{T}'_{b_m}\}$ based on Eq. 5. 6: Update $\{\mathcal{B}_i^{(1)}, \ldots, \mathcal{B}_i^{(N)}\}_{i=1}^M$ based on Eq. 6. 7: end for 8: Calculate L for $\{\mathcal{T}'_{b_1}, \ldots, \mathcal{T}'_{b_m}\}$ based on Eq. 5. 9: Update $\theta^{(k)}$ for all $k \in [N]$ based on Eq. 6. 10: 11: end for 12: Initialize $\{\mathcal{B}_i^{(1)}, \ldots, \mathcal{B}_i^{(N)}\}_{i=1}^M$ with zeros. 13: while Not converged do Calculate L for $\{\mathcal{T}_1, \ldots, \mathcal{T}_M\}$ based on Eq. 5. 14: Update $\theta^{(k)}, \{\mathcal{B}_i^{(k)}\}_{i=1}^M$ for all k based on Eq. 6. 15: 16: end while

 Pre-train the main core tensors and finetune the model to the test set

Experiments

• CTN converges much faster than GD

Metrics/Algorithms	GD	ALS	CTN	tCTN
RSE↓	0.1243	0.1229	0.1205	0.1201
Second per Image↓	22.2	109.3	6.55	0.57

• Higher γ costs more time to train, $\gamma = 20$ performs best

Metrics/Settings	0	5	10	20	50
RSE↓	0.1284	0.1246	0.1212	0.1201	0.1211
Batch per Second↑	26.53	19.53	13.44	9.93	4.68

Experiments

			TT-WOPT				
0.0	PSNR ↑	19.69	23.21 0.1262	22.22	22.27	23.50	23.53
0.9	RSE↓	0.1868	0.1262	0.1396	0.1388	0.1205	0.1201
0.7	PSNR ↑	25.18	25.36 0.0972	24.51	26.82	27.78	27.79
0.7	RSE↓	0.0993	0.0972	0.1072	0.0822	0.0736	0.0735

Level	Metrics	TT-WOPT	TR-ALS	CTN	tCTN
10dB	PSNR ↑	19.24	19.69	20.17	20.33
Toub	RSE↓	0.0849	0.0774	0.0686	0.0682
20dB	PSNR↑ RSE↓	19.48	20.03	20.23	20.34
	RSE↓	0.0804	0.0723	0.0682	0.0675

Future Works

- Replace MLP with CNN, which can go deeper and preserve local structures of the input tensors.
- Analyze the patterns of the core tensors.
- Theoretical analyses of the core tensor network.
- Thanks for listening! E-mail: jianfu.zhang@riken.jp