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motivations




Quantum mechanics and machine learning are
intrinsically probabilistic theories

Neural networks and tensor networks are two
extremely successful paradigms in their respective
fields

Can we connect their mathematical formulation?
Can we improve one by using the other?
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content of the talk




1. quantum mechanics and linear algebra
a. wavefunctions are vectors
b. observables are matrices
2. linear algebra and tensor networks
a. Tensor networks as an efficient tool for certain
problems in linear algebra
3. tensor networks and machine learning

a. tensor networks for probabilistic modeling
b. Examples for supervised and unsupervised learning



quantum mechanics




wavefunctions are vectors
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observables are matrices
Ov=u

energy F =
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magnetization A =

Dynamical behavior: Schrodinger equation
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tensor networks and linear algebra




matrix product representations
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in physics, if e physical degrees of freedom are arranged on a line:
one dimension.

® the vector fulfills an area law

then matrix product states are o faithful representation
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tensor networks and machine learning




xonann Machines (BM):
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Restricted Boltzmann Machines are a subclass of string bond states
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Relationship with graphical models

Graphical models are classical probabilistic models where one assumes
a certain factorization of the probability density function
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Locality of the RBM
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Combining different models




classification




Image Classification

Goal: Given a dataset of images
and corresponding labels, we want to
predict the label of a new image
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Image Classification

Goal: Given a dataset of images
and corresponding labels, we want to
predict the label of a new image

Choose a'model’:  p(x,y) = SBS(z,y)

Define a cost function: — Z log(p(yxz’ z;))




FashionMNIST
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Architecture

Generalized
Tensor Network

Splitting  Contraction

Convolutions Pooling

IEEE Access 8, 68169-68182




maximum likelinood estimations




Maximum likelihooo

Learn from a database: L= logP=> log(T;/Z)

Learn from a distribution: D(P||T/Z) = pr log (T /Z)




Some models for unsupervised learning
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Expressive power
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oractical applications: random distributions
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oractical applications: real data sets

=
[«)]

Negative log-likelihood per sample

Jay
N
s

©

a)

15+

121

141

12

101

6_
5_
2 6 10 6 10 2 6
Rank
—e— HMM MPS, —=— BMpg —— BM, —— LPSg —— LPS.

NeurlPS, 2019




conclusions




quantum mechanics and linear algebra
linear algebra and tensor networks
graphical models can be mapped to tensor
networks

tensor networks can be used for

o classification problems
o modeling probabilistic theories

tensor networks can provide deeper mathematical
insights



thanks for your attention




