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1 Background: Classifying images in

quantum space

Step one: Mapping images to the many-body Hilbert space
Step two: Classifying images by distance



Mapping images to the many-body Hilbert space
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Classifying images by distance (fidelity)
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2 How are images distributed in

quantum space

©Why bother to map images to quantum space

©Distribution of 1images 1n different spaces in MNIST dataset



Why bother to map 1images to quantum space?

Classical computer

Quantum computer
Data

Quantum state
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0o Is this true?
o O

Distances

We hope 1mages with the same label are closer.

Schuld M. Machine learning in quantum spaces[J]. Nature, 2019, 567(7747): 179.



Distribution of 1images 1n different spaces

Average Euclidean distances (a) and fidelities (b) between the samples of MNIST in the
original (a) and quantum space (b)!.
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3 Performance of generative tensor
network classification

©Tensor network representation for an entangled state

©Comparison of testing accuracy



Tensor network representation for an entangled state
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Comparison of testing accuracy
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4 Contributions

©Images with the same label are closer in quantum space

©(Generative tensor network can obtain a good classification

hyperplane 1n quantum space
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