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Definitions

® Tensors are multi-dimensional arrays, which are higher-order generalizations

of matrices and vectors.

a
. A A
(a) scalar (b) vector (c) matrix (d) tensor

® Tube fibers and frontal slices of a third-order tensor

—

(a) Tube fibers A(%, j,:) (b) Frontal slices A(:, :,7) or A®
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Tensor Multiplication

For A € RV *PXE5 and B e RP*2%13  define the t-product
C=AxBeR¥2x5s

which can be calculated by

P

c(ily 7/’27 :) = ZA(il,p7 :) ® B(p7 7'.27 :)>

p=1

where ® denotes circular convolution between two tube fibers.

Let C = ft[C, [}, 3] denote the result of fast Fourier transform (FFT) along
the third mode of C, the t-product can be calculated by matrix multiplication
on each frontal slice separately:

Cls) — A(is) % l’;’(i?,)7 i3=1,-- I
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Tensor Singular Value Decomposition (T-SVD)

Let A € Ri*2XIs A can be factored as

A=UxS*V".

® S is the core singular value tensor and * denotes t-product.
U and V are orthogonal tensors, i.e. UT U = VT xV =T.

In Fourier domain, AD =7 « §O x ]A/(i), i=1,---,1Is.

® The tensor nuclear norm (TNN) is defined as the average value of the matrix

nuclear norm of all frontal slices in the Fourier domain.
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Tensor Singular Value Decomposition: Algorithm

The following algorithm is for tensor singular value decomposition.

Algorithm 1: T-SVD for order-3 tensor
Input: A € RIixT2xIs,

1 A efft(A,[],3),

2 for is=1,---,13do

3 [USV}—SVD( ( is));

a | U, is)=U, S(,: ) S, V(,:i3) = V.

5 end

6 U+ ifft@.[1,3), S+ ifft(S,[1,3), V « ifft(V,[1,3).
Output: U, S, V.

® The TNN of tensor A is defined as

mln(11 Iy) I3

Al = Z\IA(’S)H p L XSt

L31 i3=1

® The {1-norm of three way tensor Bis |[Bl1 = 3=, ;5. [biria.is -
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Robust Tensor Principal Component Analysis

-

A4

+ .

| -
Original tensor Low-rank tensor Sparse tensor
min [[L]l. + A[E]1, st X =L+E, )

where X is a regularization parameter, ||£]|. denotes the tensor nuclear norm of
low-rank tensor £, and ||€||1 is the £1 norm for the sparse tensor.
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Robust Block Tensor Principal Component Analysis

Main idea: block the whole tensor into the concatenation of block tensors
in the same size.
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Figure 1: lllustration of the RBTPCA model.
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Robust Block Tensor Principal Component Analysis

The proposed RBTPCA method can be formulated into the following convex

optimization model:

P

min Lpll« + A€
i 3041 + Al "

s.t. X=L,8---BLp+EB---BEP

® P represents the number of the block tensors decomposed by the whole

tensor.

® “H” denotes the concatenation operator of block tensors.

Ly, p=1,2,..., P denotes the block low rank component.

® &), p=1,2,..., Pis the block sparse component.
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Hlumination Normalization for Face Images

Figure 2: Four methods for removing shadows on face images with size 192 x 168 x 64.
(a) original faces with shadows; (b) RPCA; (c) multi-scale low rank decomposition; (d)
RTPCA; (¢)RBTPCA.
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Improved Robust Tensor Principal Component Analysis

Main idea: reshape core singular value tensor along the third mode.

shape

I =min({,1,)
reshape

»|

® S denotes the core singular value matrix.
® Can we make core tensor more diagonal?

® Tensor nuclear norm can be presented in another way.
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Example : Difference of Singular Values

values in core tensor

singular values in core matrix
1000 T T T

120

100

" l.-------
2 3

1 4 5 6 7 8 9 10

(a)

® Tensor data is the surveillance video in hall.

® Values in core tensor decrease slowly, however, singular values for core matrix
S decrease rapidly.

® Core tensor has low rank structures.
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Improved Robust Tensor Principal Component Analysis

® The improved tensor nuclear norm (ITNN) is defined as follows:

L]l = (L]« + AsIS] (4)
where \g is a parameter to balance the two terms. The additional term
|IS]|« can additionally exploit low rank information in the third mode.

® The improved robust tensor principal component analysis (IRTPCA) opti-

mization model is formulated as:

IgliIé} [ L]irnN + A€, st X =L+E. (5)
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Frequency Component Analysis

® When the FFT is conducted on the third mode of A, different frontal slices
represent different frequency components and have vary physical meanings.

2 =i
mode-3 R 1)
/ (A, [.3) {4}, 2

_—

),

A A

Figure 3: lllustration about the FFT on an order-3 tensor.

Figure 4: FCA results of a grayscale video with size 320 x 240 x 90. (a) Original; (b)
zero frequency component; (c) non-zero frequency components.
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Frequency-Weighted Robust Tensor Principal Component Analysis

® To explore the frequency prior knowledge of data, the Frequency-Weighted
TNN (FTNN) is defined as follows:

a LD
. @
L ==
I£][Frn 2
oqgﬁ(fa)
1
= £ 2 asll L@, ©)
iz=1
where o, > 0,43 = 1,---,I3 is called as frequency weight or filtering
coefficient.

® The frequency-weighted robust tensor principal component analysis (FRT-
PCA) model can be represented as follows:

Igllrgl ”L”FTNN + )\ngh s.t. X=L+E. (7)
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Background Modeling for Surveillance Videos

(f)

Figure 5: Recovered background images of 5 example sequences. (a) Original; (b)
Ground-truth; (c) RPCA; (d) RTPCA; (e) IRTPCA; (f) FRTPCA.
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THANK YOU

Any Questions

el
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