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Definitions
• Tensors are multi-dimensional arrays, which are higher-order generalizations

of matrices and vectors.
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• Tube fibers and frontal slices of a third-order tensor

(b) Frontal slices A(:, :, i) or A(i)(a) Tube fibers A(i, j, :)
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Tensor Multiplication

• For A ∈ RI1×P×I3 and B ∈ RP×I2×I3 , define the t-product

C = A ∗ B ∈ RI1×I2×I3

which can be calculated by

C(i1, i2, :) =
P∑

p=1
A(i1, p, :)~ B(p, i2, :),

where ~ denotes circular convolution between two tube fibers.

• Let Ĉ = fft[C, [], 3] denote the result of fast Fourier transform (FFT) along
the third mode of C, the t-product can be calculated by matrix multiplication
on each frontal slice separately:

Ĉ(i3) = Â(i3) × B̂(i3), i3 = 1, · · · , I3.
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Tensor Singular Value Decomposition (T-SVD)
Let A ∈ RI1×I2×I3 , A can be factored as

A = U ∗ S ∗ VT.
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• S is the core singular value tensor and ∗ denotes t-product.
• U and V are orthogonal tensors, i.e. UT ∗ U = VT ∗ V = I.
• In Fourier domain, Â(i) = Û (i) × Ŝ(i) × V̂(i), i = 1, · · · , I3.

• The tensor nuclear norm (TNN) is defined as the average value of the matrix
nuclear norm of all frontal slices in the Fourier domain.
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Tensor Singular Value Decomposition: Algorithm
The following algorithm is for tensor singular value decomposition.
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C. Notations and definitions related to tensor singular value
decomposition

Definition 4 ( T-product). Given two tensors A ∈ RI1×I2×I3

and B ∈ RI2×J×I3 , the t-product between them is defined as

C = A ∗ B ∈ RI1×J×I3 , (5)

which can be computed by

C(i, j, :) =
I2∑

k=1

A(i, k, :) • B(k, j, :), (6)

where • denotes the circular convolution between two tubal
fiber vectors.

It has been proven in detail in [2], [3] that this t-product
operator can be calculated in the Fourier domain as

Ĉ(i) = Â(i)B̂(i), (7)

which means that each frontal slice of Ĉ can be obtained by
the matrix multiplication of the corresponding frontal slices of
Â and B̂.

In addition, according to the Fourier transform theory, there
are the following property for any order-3 tensor = H ∈
RI1×I2×I3 [2]:{

Ĥ(1) ∈ RI1×I2 ,

conj(Ĥ(i)) = Ĥ(I3−i+2), i = 2, · · · ,
⌊
I3+1
2

⌋
.

(8)

Utilizing the property (8), we only need to compute ⌈ I3+1
2 ⌉

matrix multiplications for t-product as

Ĉ(i) =

{
Â(i)B̂(i), i = 1, · · · , ⌈ I3+1

2 ⌉,
conj(Ĉ(I3−i+2)), i = ⌈N3+1

2 ⌉+ 1, · · · , I3.
(9)

At last, C in the time domain can be gotten by A =
ifft(Â, [], 3).

Definition 5 (Conjugate transpose). [4] The conjugate trans-
pose of A ∈ RI1×I2×I3 is denoted as AT ∈ RI2×I1×I3 , which
is achieved by firstly conjugating transpose each of frontal
slice and then reversing the order of frontal slices from 2 to
I3.

Definition 6 (Orthogonal tensor). [5] A tensor A is called
orthogonal when it satisfies

AT ∗ A = A ∗ AT = I, (10)

where I is identity tensor, whose first frontal slice is identity
matrix and the rest are zero.

Definition 7 (F-diagonal tensor). [5] A tensor A is called
f-diagonal when each of frontal slice A(i), i = 1, · · · , I3 is a
diagonal matrix.

Definition 8 ( T-SVD). [1] For a three-way tensor A ∈
RI1×I2×I3 , its tensor singular value decomposition (t-SVD)
can be represents as

A = U ∗ S ∗ VT, (11)

where U ∈ RI1×I1×I3 and U ∈ RI2×I2×I3 are orthogonal
tensors while S ∈ RI1×I2×I3 is a f-diagnonal tensor.
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Fig. 2. Illustration of t-SVD framework

Based on t-product, this decomposition can be obtained by
computing matrix SVDs in the Fourier domain. Then we can
acquire

Â(i3) = Û(i3)Ŝ(i3)V̂(i3), i3 = 1, · · · , I3. (12)

Taking advantage of the property (8), we can obtain the de-
tailed t-SVD calculation process in Algorithm 2. The number
of SVD needs to be computed is ⌈ I3+1

2 ⌉ for a tensor with
size I1× I2× I3. Figure 2 also gives an decomposition graph
for better understanding. Compared with matrix SVD, t-SVD
can better excavate low-rank structure in multi-way tensor. As
it deals with the first and second dimensions by matrix SVD
but leaves the third mode by circular convolution, the low-
rank information in the 3rd mode is not fully exploited. The
decomposition results will change with different dimension
order of the data. On the other hand, t-SVD can only process
three-way data. It is meaningful to develop effective high-
dimensional low-rank decomposition framework.

Algorithm 1: T-SVD for order-3 tensor

Input: A ∈ RI1×I2×I3 .
1 Â ←fft(A,[],3),
2 for i3 = 1, · · · , I3 do
3 [U,S,V] = SVD (Â(:, :, i3));
4 Û(:, :, i3)=U, Ŝ(:, :, i3) = S, V̂(:, :, i3) = V.
5 end
6 U ← ifft(Û ,[],3), S ← ifft(Ŝ,[],3), V ← ifft(V̂ ,[],3).

Output: U ,S,V .

Algorithm 2: T-SVD for order-3 tensor

Input: A ∈ RI1×I2×I3 .
1 Â = fft(A, [], 3),
2 for i3 = 1, · · · , ⌈ I3+1

2 ⌉ do
3 [Û(i3), Ŝ(i3), V̂(i3)] = SVD(Â(i3));
4 end
5 for i3 = ⌈ I3+1

2 ⌉+ 1, · · · , I3 do
6

7 end
8 Û(i3) = conj(Û

(N3−i3+2)
);

9 Ŝ(i3) = Ŝ(I3−i3+2);
10 V̂(i3) = conj(V̂(I3−i3+2)); U = ifft(Û , [], 3),
S = ifft(Ŝ, [], 3), V = ifft(V̂, [], 3).

11 Output: U ,S,V .

• The TNN of tensor A is defined as

∥A∥∗ =
1
I3

I3∑
i3=1

∥Â(i3)∥∗ =
1
I3

min(I1,I2)∑
i=1

I3∑
i3=1

Ŝ(i, i, i3). (1)

• The ℓ1-norm of three way tensor B is ∥B∥1 =
∑

i1,i2,i3
|bi1,i2,i3 |.
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Robust Tensor Principal Component Analysis

Original tensor Low-rank tensor Sparse tensor

min
L, E

∥L∥∗ + λ∥E∥1, s.t. X = L+ E , (2)

where λ is a regularization parameter, ∥L∥∗ denotes the tensor nuclear norm of
low-rank tensor L, and ∥E∥1 is the ℓ1 norm for the sparse tensor.
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Robust Block Tensor Principal Component Analysis

Main idea: block the whole tensor into the concatenation of block tensors
in the same size.
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Figure 1: Illustration of the RBTPCA model.
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Robust Block Tensor Principal Component Analysis

The proposed RBTPCA method can be formulated into the following convex
optimization model:

min
Lp,Ep

P∑
p=1

(∥Lp∥∗ + λ∥Ep∥1)

s. t. X = L1 � · · ·� LP + E1 � · · ·� EP

(3)

• P represents the number of the block tensors decomposed by the whole
tensor.

• “� ” denotes the concatenation operator of block tensors.
• Lp, p = 1, 2, . . . ,P denotes the block low rank component.
• Ep, p = 1, 2, . . . ,P is the block sparse component.
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Illumination Normalization for Face Images2.5 Applications 57

(a) (b) (c) (d) (e)

Fig. 2.8: Four methods for removing shadows on face images. (a) original
faces with shadows; (b) RPCA [4]; (c) multi-scale low rank decomposition
[36]; (d) TNN-RPTCA[30]; (e) Block-RPTCA[11].

image can be approximated by its low rank approximation. If the noise ratio
is not too high, the image denoising can be modeled as sparsely corrupted low
rank data which can be processed by robust principal component analysis.

A color image with the size of 𝐼1× 𝐼2 and 3 color channels can be represented
as a 3rd-order tensor X ∈R𝐼1×𝐼2×3. Since the texture information in these three
channels are very similar, the low rank structure also exists among these
channels. Classical RPCA has to process the color image on each channel
independently, which neglects the strong correlations in the third dimension.
RTPCA can fully utilize the low rank structure between channels and deal
with this problem better.

We perform numerical experiments on the images from Berkeley Segmen-
tation Dataset [33]. For each image, we randomly choose 10% of pixels and
randomly set their values to [0, 255]. Matrix based RPCA [4] is chosen as the
baseline. We conduct experiments on each channel separately by RPCA, and
combine the results into a color image. For tensor based methods, we choose
SNN-RPTCA [17], TNN-RPTCA [30], Block-TPCA [11], Improved-RPTCA

Figure 2: Four methods for removing shadows on face images with size 192× 168× 64.
(a) original faces with shadows; (b) RPCA; (c) multi-scale low rank decomposition; (d)
RTPCA; (e)RBTPCA.

10 / 18



Improved Robust Tensor Principal Component Analysis

Main idea: reshape core singular value tensor along the third mode.

1I

2I

3I
3I

shape

S S

reshape
1 2min( , )I I I

• S denotes the core singular value matrix.
• Can we make core tensor more diagonal?
• Tensor nuclear norm can be presented in another way.
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Example : Difference of Singular Values
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• Tensor data is the surveillance video in hall.
• Values in core tensor decrease slowly, however, singular values for core matrix

S decrease rapidly.
• Core tensor has low rank structures.
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Improved Robust Tensor Principal Component Analysis

• The improved tensor nuclear norm (ITNN) is defined as follows:

∥L∥ITNN = ∥L∥∗ + λS∥S∥∗ (4)

where λS is a parameter to balance the two terms. The additional term
∥S∥∗ can additionally exploit low rank information in the third mode.

• The improved robust tensor principal component analysis (IRTPCA) opti-
mization model is formulated as:

min
L, E

∥L∥ITNN + λ∥E∥1, s.t. X = L+ E . (5)
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Frequency Component Analysis
• When the FFT is conducted on the third mode of A, different frontal slices

represent different frequency components and have vary physical meanings.

fft(A, [], 3)

A Â

mode-3 {
Â
}
0

{
Â
}
1

{
Â
}
i

Figure 3: Illustration about the FFT on an order-3 tensor.

5

P

P−1S S

Fig. 5: Illustration of transforms between core tensor S ∈
RI1×I2×I3 and core matrix S̄ ∈ Rmin{I1,I2}×I3

(a) (b) (c)

Fig. 6: FCA results of a grayscale video X ∈ R320×240×90.
(a) Original; (b) zero frequency component; (c) non-zero
frequency components.

Fourier domain and shrink them with a same threshold. It is
inappropriate and inflexible to deal with various tensor data
in such a way, which makes prior knowledge about Fourier
analysis neglected.

According to the analysis results about the Fourier transform
in section II-B, when we take the DFT along the third mode of
a order-3 tensor, many frequency bands in the Fourier domain
can be obtained and each frequency band corresponds to a
frequency component in the time domain. In other words,
given a tensor X ∈ RI1×I2×I3 , it can be decomposed into
I frequency components via Fourier analysis:

X = [X ]0 + [X ]1 + · · ·+ [X ]I−1 (12),

where I =
⌈
I3+1
2

⌉
.

We select a grayscale surveillance video sequence from
SBI dataset [47]. It has 90 frames with size 320 × 240,
denoted as X ∈ R320×240×90. There are I = 46 frequency
bands in Fourier domain, and we analyze the corresponding
46 frequency components in the time domain. Fig. 6 is
an illustration of the frequency component analysis (FCA)
results for this grayscale video. We can see that the zero-
frequency component contains almost all of the background
information (low-rank component), and the moving object
(sparse component) lies in the nonzero-frequency component.

(a) (b) (c)

Fig. 7: FCA results of a color image X ∈ R321×481×3. (a)
original; (b) zero-frequency component; (c) nonzero-frequency
component.

In addition, a color image of size 321 × 481 is randomly
selected from Berkeley Segmentation Dataset [48], denoted

as X ∈ R321×481×3. There are two frequency components
including zero frequency component and non-zero frequency
component. Fig. 7 shows the FCA results for this color image.
As we can see, the zero frequency component contains the
main texture information, and the nonzero frequency com-
ponent contains the difference information of three channels.
Therefore, we can conclude that different bands should be
treated differently.

Motivated by the above analysis of the visual data, we can
see that the classical TNN defined by t-SVD is not appropriate
in some applications, and different weights should be assigned
to different frequency bands. With the newly defined frequency
weighted TNN, the low-rank components will be extracted
more completely.

B. Frequency-weighted Tensor Nuclear Norm (FTNN)

In order to better extract low-rank structure, we define the
frequency-weighted tensor nuclear norm (FTNN) of a tensor
X ∈ RI1×I2×I3 as follows:

∥X∥FTNN =
1

I3
∥bcirc(X )∥FTNN =

1

I3
∥bdiag(X̄ )∥FTNN

=
1

I3

∥∥∥∥∥∥∥∥∥


α1X̄ (1)

α2X̄ (2)

. . .
αI3X̄ (I3)


∥∥∥∥∥∥∥∥∥
∗

=
1

I3

I3∑
i3=1

αi3∥X̄ (i3)∥∗ (14)

where αi3 ≥ 0 is called frequency weight or filtering coeffi-
cient.

According to the property in (2), we can get αi = αI3−i+2,
i = 2, 3, · · · , I , where I =

⌈
I3+1
2

⌉
. We need to choose

I weights, which form a frequency-weighted vector α =
[α1, α2, . . . , αI ]

T. When α1 = α2 = · · · = αI = 1, the FTNN
reduces to TNN. The value of weighted vector α depends on
the prior knowledge of Fourier analysis in applications, which
can be adjusted to achieve filtering in the Fourier domain.
Different from existing definitions of TNN, the FTNN is the
first one defined via Fourier analysis, and it is very practical
due to the wide application of frequency analysis.

Similar to tensor singular value thresholding (TSVT) op-
erator related to TNN [39], the frequency-weighted tensor
singular value thresholding (FTSVT) are strictly derived. The
optimization model for proximal mapping is as follows:

min
X

τ∥X∥FTNN +
1

2
∥X − Y∥2F (15)

It is equivalent to

min
X

τ∥X∥FTNN +
1

2I3
∥X̄ − Ȳ∥2F

⇔ min
X

τ∥bdiag(X̄ )∥FTNN +
1

2I3
∥X̄ − Ȳ∥2F

⇔ min
X

1

I3

I3∑
i3=1

(
ταi3∥X̄ (i3)∥∗ +

1

2
∥X̄ (i3) − Ȳ(i3)∥2F

)
(16)

Figure 4: FCA results of a grayscale video with size 320 × 240 × 90. (a) Original; (b)
zero frequency component; (c) non-zero frequency components.
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Frequency-Weighted Robust Tensor Principal Component Analysis

• To explore the frequency prior knowledge of data, the Frequency-Weighted
TNN (FTNN) is defined as follows:

∥L∥FTNN =
1
I3

∥∥∥∥∥∥∥∥∥∥


α1L̂(1)

α2L̂(2)

. . .
αI3 L̂(I3)


∥∥∥∥∥∥∥∥∥∥
∗

=
1
I3

I3∑
i3=1

αi3∥L̂
(i3)∥∗, (6)

where αi3 ≥ 0, i3 = 1, · · · , I3 is called as frequency weight or filtering
coefficient.

• The frequency-weighted robust tensor principal component analysis (FRT-
PCA) model can be represented as follows:

min
L, E

∥L∥FTNN + λ∥E∥1, s. t. X = L+ E . (7)
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Background Modeling for Surveillance Videos

(a) (b) (c) (d) (e) (f)

Figure 5: Recovered background images of 5 example sequences. (a) Original; (b)
Ground-truth; (c) RPCA; (d) RTPCA; (e) IRTPCA; (f) FRTPCA.
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