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Limitation in Motor-Imagery-based BClIs
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Previous Work

* Tensor decompositions for feature extraction and classification of high dimensional datasets (Andrzej Cichocki, 2010)

Wavelet Transformation

channels X smaples channels X frequency bins X time frames

Tensorize MI frames by wavelet transform help enrich the representation of trials.




Previous Work

* Generating Artificial EEG Signals to Reduce BCI Calibration Time (Fabien Lotte, 2011)
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Generate artificial trials by information randomly selected from raw data help improve the performance ? N



Previous Work

* A New Method to Generate Artificial Frames Using the Empirical Mode Decomposition (EMD) for an EEG-Based
Motor Imagery BCI (Josep Dinarés-Ferran et. al., 2018)
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Randomly mixing IMFs rather than segments allows artificial frame to contain time-frequency information of the *
raw data. ]



Previous Work

e Can we tensorize the MI frames after augmented by mixing components?

* Do other decomposition methods except EMD take effect?
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Component Mixing Strategy (CMS)

1. Split the test set and training set
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Results on our experimental motor imagery EEG data

Results on EMD-based CMS

The combination of two strategy does improve the performance on accuracy

Accuracy %% (mean+std)
CNN WNN

OxDataset 77.9+0 88.0+0
1xDataset 88.9+1.9
2xDataset 85.6+2.2 86.7+2.5
3xDataset 86.4+2.6 87.3+1.7
4xDataset 83.6+29 85.04+2.6

S5xDataset 829+2.7 84.3+1.5
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Experimental Settings

» 6 subjects from BCI Competition IV dataset 2b*, 300 MI frames for each

Ratio settings

20, 50, 100, 150 for training, respectively, the rest for test

Evaluation models

* EEGNet (Vernon J. Lawhern et. al., 2018)

» Wavelet Neural Network
« CSP+ SVM

Decomposition methods

 EMD (Norden E. Huang et. al., 1998)

* MEMD (Naveed ur Rehman et. al., 2010)

« ITD (Mark G Frei et.al., 2007)
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Distribution of Raw Data and Artificial Frames

Distribution visualized by t-distributed Stochastic Neighbor Embedding (t-SNE)

The artificial trials are clustered around raw frames.
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Distribution of Raw Data and Artificial Frames

Comparison on mean power spectral density (PSD)

The generated data and real data share some similar traits on frequency.
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Performance on Augmentation

Results on binary accuracy and area under curve (AUC ) score

Improvement occurs in most cases.
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Conclusion

Take-away messages

» Adding additional data generated by mixing components and then tensorize before classification help improve
the performance.

« EMD, MEMD and ITD based CMS all take effect even when the training set is extremely small.
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