

Compressing Recurrent Neural Networks Using Hierarchical Tucker Tensor Decomposition

Miao Yin, Siyu Liao, Xiao-Yang Liu, Xiaodong Wang and Bo Yuan

Architecture

Benefits of HT-RNN

- **Parameter Sharing.** The decomposed parameters in the same level can perform parameter sharing via transfer tensors.
- Stronger Representation Power. the hierarchical structure imposed on the input-to-hidden layers makes RNNs can exploit and extract the important representation and pattern from high-dimensional data in a much more hierarchical way, thereby significantly improving RNN models' representation capability.
- **Iower storage and computational costs.** HT decomposition inherently provides higher complexity reduction on the same size tensor data with the same selected rank.

HT Decomposition

 ${\boldsymbol{\mathcal{U}}}_s = {\boldsymbol{\mathcal{G}}}_s imes_1^2 {\boldsymbol{\mathcal{U}}}_{s_1} imes_1^2 {\boldsymbol{\mathcal{U}}}_{s_2}$

Forward Computation in a HT-Layer

Complexity Analysis

Model	Space	Time
RNN FP	O(NM)	$\mathcal{O}(NM)$
RNN BP	$\mathcal{O}(\mathcal{W}\mathcal{W})$	$\mathcal{O}(NM)$
TT-RNN FP	$\mathcal{O}(dmnr^2)$	$\mathcal{O}(dmr^2N)$
TT-RNN BP		$\mathcal{O}(d^2mr^4N)$
TR-RNN FP	$O(dmn^2)$	$\mathcal{O}(dr^3N + dr^3M)$
TR-RNN BP	$O(amnr^{-})$	$\mathcal{O}(d^2r^5N + nd^2r^5M)$
BT-RNN FP	$\mathcal{O}(dmnr + r^d)$	$\mathcal{O}(dmr^d NC)$
BT-RNN BP		$\mathcal{O}(d^2mr^dNC)$
HT-RNN FP	$\mathcal{O}(dmnr + dr^3)$	$\mathcal{O}(dmr^2N + dr^3N)$
HT-RNN BP		$\mathcal{O}(d^2mr^5N+d^2r^6N)$

Complexity Analysis

Experiments (End-to-End)

• UCF11

Model	CR	# Param.	Accuracy (%)
LSTM	1	59M	69.7
TT-LSTM	17 554×	3 360	79.6
(ICML-17)	17,554^	5,500	19.0
BT-LSTM	17 414 ~	3 387	85.3
(CVPR-18)	17,414^	5,507	65.5
TR-LSTM	3/ 103 ~	1 725	86.0
(AAAI-19)	54,175 ^	1,725	00.7
HT-LSTM	47 375×	1 245	87.2
(Ours)	-1,575 ~	1,245	07.2

• Youtube Celebrities

Model	CR	# Param.	Accuracy (%)
LSTM	$1 \times$	59M	33.2
TT-GRU	17,723×	3,328	80.0
TT-LSTM	17,388×	3,392	75.5
HT-LSTM (Ours)	72,818 ×	810	88.1

Experiments (with Pretrained CNN)

• UCF11

Model	Accuracy (%)
[Wang <i>et al.</i> , 2015]	84.2
[Sharma <i>et al.</i> , 2015]	86.0
[Cho <i>et al.</i> , 2014]	88.0
[Gammulle et al., 2017]	94.6
CNN + LSTM [Pan <i>et al.</i> , 2019]	92.3
CNN + TR-LSTM [Pan <i>et al.</i> , 2019]	93.8
CNN + HT-LSTM (Ours)	98.1

• HMDB51

Model	Accuracy (%)
[Wang et al., 2015]	63.2
[Feichtenhofer et al., 2016]	56.8
[Carreira and Zisserman, 2017]	RGB + Flow: 66.4
[Carrena and Zisserman, 2017]	RGB: 49.8
CNN + LSTM [Pan <i>et al.</i> , 2019]	62.9
CNN + TR-LSTM [Pan et al., 2019]	63.8
CNN + HT-LSTM (Ours)	64.2

Conclusion

- A new RNN compression approach using Hierarchical Tucker (HT) decomposition
- The HT-based RNN models exhibit strong hierarchical structure
- The storage and computational costs are lower than SOTAs
- experiments on different datasets show that, our proposed HT-LSTM models significantly outperform the state-of-the-art compressed RNN models in terms of both compression ratio and test accuracy.