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II Motivations

» Tensor decompositions have become basic tools in many fields.
* Data mining
* Computer vision
* Deep learning

» With the ever-growing demands of efficient big data analytics, developing efficient tensor
decompositions becomes a critical task.
* Dimensionality increase
* Order increase

» The existing optimizations are not incompatible with the GPU architecture.
*  Optimize better to the GPU architecture
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II Contributions

€ Implement third-
order TT and TR
decompositions
on GPU
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II TT and TR Decompositions
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II Optimization Strategies

» Faster Memory Access
« Tensor X inalDarray &

1D array in memory

|

three-order tensor

» Parallelization Schemes

* Parallel Jacobi SVD

* Parallel diagonal matrix times matrix
SVT = parallel(s, - V;)

* Parallel element-wise product

Figure 3: Tensor’ s storage as a 1D array in GPU memory
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» Data Transfer
* Streaming transmission modules
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II Performance on GPU
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Figure 4: Running time and speedups of third-order TT
decomposi-tion on Tesla V100 GPU and two 10-core CPUs
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Figure 5: Running time and speedups of third-order TR
decomposi-tion on Tesla V100 GPU and two 10-core CPUs.
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II Conclusion

* According to the characteristics of the algorithms and the architecture of GPU, we
implemened third-order tensor-train and tensor-ring decompositions on GPU,
exploiting parallelism.

* We designed three optimization strategies: parallelization schemes, optimizing
memory access , etc. We achieved up to 6.67 X and 6.36 X speedups for third-order
TT and TR decompositions over the GPU-baseline on a Tesla V100 GPU.

* Future work: higher-order decomposition, multi-node GPU implementation,
incorporating TT and TR decompositions into the cuTensor library.
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