cuTensor-TT/TR: High Performance Third-order Tensor-Train and Tensor-Ring Decompositions on GPU

TNRML Workshop, IJCAI 2020

Hao Hong, Tao Zhang, Xiao-Yang Liu Shanghai University, Columbia University

Motivations

- > Tensor decompositions have become basic tools in many fields.
 - Data mining
 - Computer vision
 - Deep learning
- With the ever-growing demands of efficient big data analytics, developing efficient tensor decompositions becomes a critical task.
 - Dimensionality increase
 - Order increase
- The existing optimizations are not incompatible with the GPU architecture.
 - Optimize better to the GPU architecture

Contributions

 Implement thirdorder TT and TR decompositions on GPU Optimizing memory access, parallel strategies, faster data transfer, and faster tensor products

Achieve up to 6.67× and 6.36× speedup respectively vs. the GPUbaseline on GPU

cuTensor-TT/TR: High Performance Third-order Tensor-Train and Tensor-Ring Decompositions on GPU

TT and TR Decompositions

cuTensor-TT/TR: High Performance Third-order Tensor-Train and Tensor-Ring Decompositions on GPU

Optimization Strategies

- Faster Memory Access
- Tensor ${\mathcal X}$ in a 1D array x
- Parallelization Schemes
- Parallel Jacobi SVD
- Parallel diagonal matrix times matrix $SV^T = \text{parallel}(s_k \cdot V_k^T)$
- Parallel element-wise product $\text{parallel}(s_{m-k+1}^{(0)} = s_k \cdot s_k), \ 1 \leq k \leq m$
- Data Transfer
- Streaming transmission modules

Figure 3: Tensor' s storage as a 1D array in GPU memory

Performance on GPU

Figure 4: Running time and speedups of third-order TT decomposi-tion on Tesla V100 GPU and two 10-core CPUs

Figure 5: Running time and speedups of third-order TR decomposi-tion on Tesla V100 GPU and two 10-core CPUs.

cuTensor-TT/TR: High Performance Third-order Tensor-Train and Tensor-Ring Decompositions on GPU

- According to the characteristics of the algorithms and the architecture of GPU, we implemened third-order tensor-train and tensor-ring decompositions on GPU, exploiting parallelism.
- We designed three optimization strategies: parallelization schemes, optimizing memory access, etc. We achieved up to 6.67 × and 6.36 × speedups for third-order TT and TR decompositions over the GPU-baseline on a Tesla V100 GPU.
- Future work: higher-order decomposition, multi-node GPU implementation, incorporating TT and TR decompositions into the cuTensor library.

Thank you!

