
High-order Learning Model via
Fractional Tensor Network Decomposition

Chao Li, Zhun Sun, and Qibin Zhao
RIKEN Center for Advanced Intelligence Project (AIP), Tokyo, Japan

{chao.li, qibin.zhao}@riken.jp

Abstract

We consider high-order learning models, of which the weight tensor is represented
by symmetric tensor network (TN) decomposition. Although such models have
been widely used on various tasks, it is challenging to determine the optimal order
in complex systems (e.g., deep neural networks). To tackle this issue, we introduce
a new notion of fractional tensor network (FrTN) decomposition, which generalizes
the conventional TN models by allowing the order to be an arbitrary fraction. Due
to the density of fractions in the field of real numbers, the order of the model can be
formulated as a learnable parameter and simply optimized by stochastic gradient
descent (SGD) and its variants. We apply the proposed model to enhancing the
classic ResNet-26/50 [13] and MobileNet-v2 [35] on both CIFAR-10 and ILSVRC-
12 classification tasks, and the results demonstrate the effectiveness attributed to
the learnable order parameters in FrTN.

1 Introduction

High-order methods are natural extensions to enhance the expressive power of learning models [2,
19, 41]. Taylor’s theorem states that a smooth function can be well approximated by a polynomial
with a sufficiently high degree [39]. However, there are two drawbacks which severely limit the
application of the vanilla high-order models in practice: (i) The dimension of learnable weights
would exponentially grow with increasing of the model order; (ii) Improper model order would break
the “bias-variance” [21] balance of the model, yielding unsatisfactory generalization performance.

The issue (i) fortunately can be addressed by leveraging tensor network (TN) decomposition [9],
which aims to parameterize the high-order weight tensor by a collection of low-dimensional fac-
tors (a.k.a., core tensors) [5]. Recently, TN-based methods are widely applied to important machine
learning tasks [16, 23, 28, 30, 38] to name a few, among which various TN decomposition models
are exhaustively studied. However, few discussions are focusing on the issue (ii), even though the
performance would be dramatically influenced by the order of the model [16, 18]. Therefore, it is of
importance to develop methods, which can efficiently select or learn the most suitable (optimal) order
parameters in practice.

The issue of order determination. Given the feature vector x ∈ RI , weight tensorW ∈ SP (RI)
and bias b ∈ R, we consider the order-P learning model as

y = Φ (W ×1 x×2 · · · ×P x + b) = Φ
(〈
W,x⊗P

〉
+ b
)
, (1)

where Φ(·) denotes a non-linear mapping over R. We see that the dimension ofW would exponen-
tially increase when the order P goes larger. The TN models are therefore applied to representing
W by lower-dimensional core tensors. However, how to determine the optimal order P is still
challenging: In Eq. (1), the order P is reflected by sum of exponents of its monomials, which is
multivariate and discrete, such that the optimization on the discrete domain is usually NP-hard [36].

First Workshop on Quantum Tensor Networks in Machine Learning, 34th Conference on Neural Information
Processing Systems (NeurIPS 2020).

The popularly-used methods, in the existing works, is to apply exhaustive search on all possible
candidates [16, 18, 30, 42]. However, the computational cost is apparently prohibited in large-scale
applications. Although considerable attention in network architecture search (NAS) reboots the
studies on evolutionary algorithms [8, 25, 27, 33], which might be promising on this issue, it remains
unexplored to determine the order of TN-based methods by NAS.

Polynomial models. In this paper, we borrow the idea of the polynomial models, which names the
essence of the “high-order learning models” in recent works, for instance, the polynomial models
usually appear in polynomial network [4, 19, 26], neural tensor network [37], bi-linear attention [20].
Most of the studies exploit the theoretical simplicity or rich interactions among features brought by
polynomials. However, there are few studies focusing on how to efficiently determine the optimal
order of the polynomial for learning models. In contrast, we extend a class of polynomials into the
fractional domain, such that the optimal order parameters for specific tasks can be efficiently learned
during the training phase.

Main contribution. In this paper, we establish a new notion of fractional tensor network (FrTN)
decomposition by generalizing the order of conventional TN models from integer to fractional domain.
Since fractions are dense in the field of real numbers, the order of model, as a parameter, can be
simply learned by stochastic gradient decent (SGD) and its variants. Based on this, we develop
FrTN-based learning models, which can be used as basic building blocks in neural networks, and
numerically prove the effectiveness in classification tasks.

2 Preliminaries and basic setup

2.1 Tensor network (TN) decomposition

Below, we briefly review several tensor network (TN) models used in the following sections, and point
out the equivalence between super-symmetric tensors and homogeneous polynomials. Throughout
the paper, we define an order-P tensor over the complex vector space CI as a multi-dimensional
array of complex numbers [22] indexed by integer tuples (i1, . . . , iP) with 1 ≤ ij ≤ I, j ∈ [P], i.e.

W =W(i1, . . . , iP)1≤i1,...,iP≤I . (2)

Denote by TP (CI) the space containing all order-P tensors over CI . The tensor W is super-
symmetric ifW(i1, . . . , iP) is invariant under all permutations of (i1, . . . , iP). Denote by SP (CI)
the linear subspace of all super-symmetric tensors in TP (CI).

For a vector x ∈ CI , the mode-m tensor-vector product with W is denoted by
Y =W ×m x ∈ TP−1(CI). Element-wisely, we have [6]

Y(i1, . . . , im−1, im+1, . . . , iP) =

I∑
im=1

W(i1, i2, . . . , iP) · x(im). (3)

The P th tensor power of a vector, denoted by x⊗P ∈ SP (CI), is defined as outer products of
x with itself by P times, i.e., x⊗P = ⊗P

m=1x such that for all 1 ≤ i1, . . . , iP ≤ I it obeys
x⊗P (i1, . . . , iP) = x(i1) · · ·x(iP).

Symmetric CP decomposition. GivenW ∈ SP (CI), there always exists {g1, . . . ,gR} ∈ CI such
that

W = (g1)⊗P + · · ·+ (gR)⊗P = [[G, · · · ,G︸ ︷︷ ︸
P copies

]], (4)

where the matrix G = [g1, . . . ,gR] ∈ CI×R denotes the “core-tensor”, and the symbol [[· · ·]]
denotes the Kruskal product [22]. The smallest R in Eq. (4) is called the symmetric rank [7] ofW ,
and Eq. (4) is called a symmetric CANDECOMP/PARAFAC (SCP) decomposition.

Symmetric tensor ring decomposition. Like the SCP model, we introduce the symmetric tensor
ring (STR) decomposition based on the work [43]. Specifically, for everyW ∈ SP (CI), its STR
decomposition is given by

W(i1, . . . , iP) = tr (G(:, i1, :) · G(:, i2, :) · · · G(:, iP , :)) , ∀1 ≤ ij ≤ I, j ∈ [P], (5)

2

where tr(·) denotes the trace operation, and G ∈ CR×I×R denotes the core tensor. Furthermore,
we assume that G has Hermitian slices, i.e., G(:, i, :) = G(:, i, :)H , i ∈ [I]1. We prove the following
proposition to guarantee the existence of STR decomposition for all super-symmetric tensors:

Proposition 1 GivenW ∈ SP (CI) of the symmetric rank R, there always an order-3 tensor G ∈
Cr×I×r, where r ≤ R and G(:, i, :) = G(:, i, :)H , such that Eq. (5) holds.

Proposition 1 implies that for an arbitrary super-symmetric tensor, it can be decomposed by Eq. (5),
of which the “TR-rank” [44] is not larger than its symmetric rank.

Note: Tensor train (TT) [31] is known as a special case of TR when there exist two adjacent core
tensors, which degenerate into matrices. Although the topological structure of TT is non-symmetric,
we introduce the partial symmetric tensor train (pSTT) model induced by the STR model. Specifically,
we modify Eq. (5) as

W?(i1, . . . , iP) = A(i1, :) · G(:, i2, :) · · · G(:, iP−1, :) ·A(:, iP), (6)

where W? denotes a partial-symmetric tensor over (i2, . . . , iP−1), i.e., entries of W is invariant
under all permutation of indices except i1 and iP .

Equivalence to degree-P polynomial. The tensorW ∈ SP (CI) defines an degree-P homogeneous
polynomial f(x) ∈ C[x1, . . . , xP] [29, 32]:

f(x) =
〈
W,x⊗P

〉
=

I∑
i1,...,iP =1

W(i1, . . . , iP)x(i1) · · ·x(iP), (7)

where x = [x1, . . . , xP]>, and 〈·, ·〉 denotes the trivial inner product of two tensors. It is easy to see
from Eq. (7) that everyW ∈ SP (CI) may be uniquely associated with a homogeneous polynomial
of degree-P in I variables [3]. In our work, such equivalence allows attacking the problem of TNs as
one of homogeneous polynomials.

3 Fractional tensor network (FrTN) induced learning models

To learn the order P , our main idea is to extend the available range of P , such that gradient-based
optimization methods can be applied. To do so, we introduce the notion of fractional tensor network
(FrTN) decomposition, which allows the order of TN to own fractional components. For each new
model, we will also discuss its application in the learning models.

3.1 Fractional SCP decomposition

We introduce the FrTN decomposition by its polynomial form. Given a tensor W ∈ SP (CI), as
aforementioned, we have its equivalent homogeneous polynomial form as Eq. (7). In this form, the
tensor’s order corresponds to the degree of a polynomial. To construct a specific order parameter in
the model, we decompose Eq. (7) as a sum of P th power of linear forms, i.e.,

f(x) =

R∑
r=1

(gr(1)x(1) + gr(2)x(2) + · · ·+ gr(I)x(I))
P

=

R∑
r=1

〈gr,x〉P . (8)

It is known that such decomposition does always exist, and the coefficients gr ∈ CI , r ∈ [R]
correspond the result of SCP decomposition ofW [3, 15]. We see that the order ofW , originally
defined as the number of indices, is successfully converted into the power function (·)P in Eq. (8). In
the conventional definition of tensor (network), the order P is constrained in non-negative integers [],
i.e., P ∈ Z≥0, while in this work we extend the available range of P into all possible fractions:

Definition 1 (FrSCP decomposition) Given a fractional number P̄ ∈ Q≥0, an order-P̄ symmetric
CP (SCP) decomposition of dimension I is defined by the fractional form of polynomial (8), of which
P is replaced by P̄ .

1Here we apply the Matlab R© syntax to representing the slicing operation.

3

Note that (a) Def. 1 naturally degenerate into the conventional SCP decomposition when assuming P̄
as non-negative integers, where the coefficients gr’s construct the corresponding core tensor of the
decomposition, and (b) we cannot precisely represent the SCP decomposition when P̄ is fractional.

FrSCP-based learning model The corresponding learning model is obtained by representing the
weight tensorW in Eq. (1) using its FrSCP form:

yFrSCP = Φ

(
R∑

r=1

〈gr,x〉P̄ + b

)
. (9)

Compared to Eq. (1), the output of Eq. (9) is calculated by sum of P̄ th power of linear forms. Since
models in learning are generally defined over R, we need to further assume the non-negativity of the
inner product in Eq. (9) to guarantee the existence of gradient. In practice like neural networks, the
assumption can be simply satisfied by applying a rectifier activation [10] before the power function.

3.2 Fractional STR decomposition

Below, we prove that the STR-induced polynomial also has the similar form as the SCP model, i.e.,
the sum of powers. Specifically,

Proposition 2 Assume that tensorsW ∈ SP (CI) and G ∈ CR×I×R obey the STR decomposition
defined as Eq. (5), then the polynomial (7) has the equivalent form:

f(x) =
〈
W,x⊗P

〉
=

R∑
r=1

σr (G ×2 x)
P
, (10)

where σr(·), r ∈ [R] denotes the rth largest eigenvalue of a matrix.

In contrast to Eq. (8), as shown in Proposition 2, the P th power function is employed on eigenvalues,
which are always real numbers because of the Hermitian structure of core tensor G. Thus, we define
the fractional extension of STR as following:

Definition 2 (FrSTR decomposition) Given a fractional number P̄ ∈ Q≥0, an order-P̄ symmetric
tensor ring (STR) decomposition of dimension I is defined by the fractional form of polynomial (10),
of which P is replaced by P̄ .

FrSTR-based learning model The model is given by representingW by its FrSTR form (10):

yFrSTR = Φ

(
R∑

r=1

σr(G ×2 x)P̄ + b

)
, (11)

following a positive semi-definite assumption on the slices G(:, i, :), i ∈ [I]. Compared to the FrSCP
model, FrSTR has the property of unitary invariance over the tensor G. Specifically,

Proposition 3 Assume G0 ∈ RR×I×R with positive semidefinite slices G(:, i, :), i ∈ [I], then

all tensors G ∈
{
G0 ×1 U×3 V|∀U,V ∈ RR×R, UU> = U>U = VV> = V>V = I

}
do not

change the value of Eq. (11) for all possible x ∈ RI and P ∈ Q≥0.

As shown in Proposition 3, the prediction by Eq. (11) would not be changed by arbitrary rotation of
G along the first and third indices.

Eq. (11) also have a norm-like form as the FrSCP-based model. With the same assumptions on Φ and
b, we can rewrite Eq. (11) as yFrSTR = ‖G ×2 x‖SP̄

, where ‖ · ‖SP̄
denotes the matrix Schatten

P̄ -(quasi)norm [1].

3.3 What if tensor train (TT)?

We cannot define “fractional tensor train (TT) decomposition” trivially using the aforementioned
framework because of the non-symmetric topology of the TT decomposition. Therefore, for an
order-P learning model, we assume an order-(P + 2) tensorW? ∈ TP+2(RI) with the pSTT format
as Eq. (6). We can prove that the following equation holds:

4

Proposition 4 Assuming the weight in Eq. (1) to be an order-(P + 2) tensorW? ∈ TP+2(RI) with
the pSTT format as Eq. (6), the following equation holds:

ypSTT = Φ
(〈
W?,x⊗P

〉
+ b
)

= Φ

(
R∑

r=1

ar(x)σr(G ×2 x)P + b

)
. (12)

In the equation, the scalar ar(x) ≥ 0, ∀r ∈ [R] denotes a non-negative weight on each eigenvalue,
where it satisfies ar(x) =

(
u>r Ax

)2
and ur ∈ RR denotes the rth eigenvector w.r.t. σr(G ×2 x).

Proposition 4 implies that an order-(P + 2) pSTT model results in an order-P “STR-based” learning
model, of which an adaptive weighting trick is exploited on each eigenvalues, and the weights
ar(x), ∀r come from the marginal order-2 core tensor A in Eq. (6). Similarly, the fractional form of
pSTT-based model can be obtained by extending the range of P in Eq. (12) into fractional domain.
More interestingly, if we further assume the root operation on Φ and omit the bias, Eq. (12) can be
rewritten as a weighted Schatten (quasi)norms [40], which are popularly used in the convex low-rank
approximation of matrices and tensors.

3.4 A general form of FrTN in neural networks

In a nutshell, FrTN brings us three inspiring operations for DNNs compared to the linear models:
(a) multi-branch structures, (b) learnable power functions, and (c) adaptive weighting on branches.
Inspired by those operations, we generalize the FrTN-based models as a basic building block for
both fully-connected (FC) and convolutional neural networks (CNNs). Given the input feature x, the
output features yj , j ∈ [J] are given by

yj =

R∑
r=1

Ar,x · [δ (Gr ? x) + 1]
P̄r , (13)

where the operation ? denotes the inner product in the FC layers or various convolutions in CNN, and
δ(·) denotes the rectified linear unit (Relu) [10]. In contrast to the orignal FrTN-based models, the
power function [·]P̄r in Eq. (13) is element-wise, and we assign different powers P̄r’s for different
branches. Note that the rectifier δ guarantees that the gradient over the power P̄r’s do always exist,
and the additional constant bias 1 avoids extreme gradient of P̄r when the ouput of δ is close to zero.

4 Experiments and Discussions

Goal. Below, we apply the model (13) to two classic image recognition tasks, i.e., CIFAR-10 [24]
and ILSVRC-12 [34]. The goal of the experiments is to verify whether the proposed learnable order
parameters can boost the performance of DNNs in specific tasks.

Models
Cifar-10 ILSVRC-12
Res-26 Res-50 Mobile-v2

err. top 1 | 5 err. top 1 | 5 err.

Baseline 11.10 23.91 | 7.11 27.55 | 10.23
CPDP=2 10.63 25.19 | 9.07 27.41 | 9.29
CPDP=3 13.53 24.04 | 7.26 66.75 | 41.18

P̄ 11.41 23.08 | 6.67 27.73 | 9.32
P̄x 8.17 22.77 | 6.54 26.69 | 8.70

P̄ + Ax 9.50 23.05 | 6.68 26.88 | 8.97
P̄x + Ax 8.35 23.01 | 6.70 26.82 | 9.94

Maxout 10.59 23.75 | 6.98 27.68 | 9.56
`p-pooling 13.20 23.25 | 6.88 27.45 | 9.21

SE 10.71 22.90 | 6.45 28.00 | 9.68

Table 1: Classification (%) error.

0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.5 1 1.50
0.05
0.1

0.15
0.2

0.25
0.3

0.35

0.5 1 1.5
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

initial initial

(a) (b)

(c) (d)

Pr
ob

.
Pr

ob
.

Pr
ob

.
Pr

ob
.

Figure 1: Histogram of P̄ in MoibleNet-v2.

Setup. We evaluate our methods by two well-known building blocks in CNNs, i.e., the bottle-neck in
ResNet [13], and its reversed variant in MobileNet [35]. In such units, we implement the model (13)

5

to replace the original 1× 1 convolutional layers, which are exploited for the channel reduction. We
totally consider 4 variants of Eq. (13) in the experiments, denoted by P̄ , P̄x, P̄ +Ax and P̄x +Ax,
where P̄ and P̄x mean that only the order parameters are learned, while “+Ax” means that the
weights Ar,x in Eq. (13) is also taken into account. The subscript x in P̄x denotes that we also apply
two FC layers sub-network to adaptively learning the order parameters. For stable training of the
networks, we further clip P̄ ’s within [0.0, 6.0], and P̄x in [0.5, 1.5]. For comparison, we employ the
CP decomposition (CPD) models with fixed orders P = 2, 3.

In the ILSVRC-12 task, we implement both ResNet50 (as Res-50 in Table 1) and MobileNet-v2 ((as
Mobile-v2 in Table 1)) as baselines, while in Cifar-10 we construct a “Res-26” to represent a relatively
shallow architecture. For training, we employ the SGD with moment equaling 0.9, SGD with Nestrov
moment 0.9, and RMSProp (ε = 1.0) [14] optimizers for Res-26, Res-50 and Mobile-v2, respectively.

Results. The classification error for the two tasks is shown in Table 1. As shown in Table 1, the
variant P̄x with adaptively learnable order parameters, outperforms its counterparts. Note that the
results of CPDP=3 diverge in our experiment. We empirically find that models with higher orders
generally lead to more unstable training dynamics. We also employ several related methods including
`p-pooling [12], Maxout [11], SE [17], the connections are discussed below.

Fig. 1 shows the histogram of the order parameters P̄ in MobileNet-v2, where the brown bars in
sub-fig. (a,b) denote the initial value of P̄ . As shown in Fig. 1, the values of P̄ and P̄x spread in the
fractional domain. Note that the values of the order parameters obey a Gaussian-like distribution
in cases of P̄ and P̄ + Ax, while in P̄x and P̄x + Ax the values concentrate at the boundary
(P̄x = 0.5 and 1.5) and uniformly spread between. We infer that the adaptive method used in P̄x

more encourages the order parameters to fully spread all available range, even going beyond. On the
other hand, the P̄ by directly learning tends to concentrate around the initial values.

5 Discussion

Connection to `p-pooling [12]. As shown in Eq. (9), the SCP-based model results in the similar
architecture to `p-pooling among multiple branches and its special case “Maxout” [10] when assuming
the P̄ th root of Φ. For each output feature, the SCP-based model first applies a linear projection of G,
and then compute the P̄ -norm of the projection as the output. However, the FrSTR and pSTT-based
models generalize `P -pooling into a higher-order form. Unlike the SCP-based model, STR and pSTT
consider the matrix Schatten P̄ -norm as pooling. It implies that more structural information like
low-rankness can be obtained by matrix norm.

Connection to the “squeeze-and-excitation” operation [17]. Compared to FrSTR-based model,
the pSTT-based model (12) incorporates additional non-negative weights ar, r ∈ [R] by “squeezing”
x into scalars on each “eigenvalue-monomial” σr(G ×2 x)P . Because of its non-negativity, it implies
a gate-like operation to control the contribution of each “monomial” for specific input features. A
similar idea is applied to “squeeze-and-excitation” network (SE-Net) [17], in which each channel is
also weighted. More notably, the weights in both SE-Net and the the pSTT-based model are calculated
by a bottleneck with two “fully-connected (FC)” layers. As shown in Proposition 4, ar is calculated
by first projecting x into a R-dimensional latent space, which is generally lower-dimensional than
i due to the low-rank fact of TT decomposition. Because of such similar structures, claim that
we show a new insight for the SE operation from the tensor-algebraic perspective, i.e., a learning
unit with SE operations can be neatly modeled by the pSTT model. In this paper, we extend the
conventional tensor network (TN) decomposition into a novel framework, i.e., FrTN, by assigning
the order parameters with fractional components. The new models are defined by their polynomial
forms, and applied to tackling the order-determination issue in learning problems. Meanwhile, we
also reveal that FrTN can be used to interpret well-known methods including `p-pooling and SE-Net
in deep learning by a novel yet unified tensor perspective.

6

References
[1] Rajendra Bhatia. Matrix analysis, volume 169. Springer Science & Business Media, 2013.

[2] Mathieu Blondel, Akinori Fujino, Naonori Ueda, and Masakazu Ishihata. Higher-order factor-
ization machines. In Advances in Neural Information Processing Systems, pages 3351–3359,
2016.

[3] Jerome Brachat, Pierre Comon, Bernard Mourrain, and Elias Tsigaridas. Symmetric tensor
decomposition. Linear Algebra and its Applications, 433(11-12):1851–1872, 2010.

[4] Grigorios G Chrysos, Stylianos Moschoglou, Giorgos Bouritsas, Jiankang Deng, Yannis Pana-
gakis, and Stefanos Zafeiriou. \π- nets: Deep polynomial neural networks. arXiv preprint
arXiv:2003.03828, 2020.

[5] Andrzej Cichocki, Namgil Lee, Ivan Oseledets, Anh-Huy Phan, Qibin Zhao, Danilo P Mandic,
et al. Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-rank
tensor decompositions. Foundations and Trends R© in Machine Learning, 9(4-5):249–429, 2016.

[6] Andrzej Cichocki, Rafal Zdunek, Anh Huy Phan, and Shun-ichi Amari. Nonnegative matrix
and tensor factorizations: applications to exploratory multi-way data analysis and blind source
separation. John Wiley & Sons, 2009.

[7] Pierre Comon, Gene Golub, Lek-Heng Lim, and Bernard Mourrain. Symmetric tensors and
symmetric tensor rank. SIAM Journal on Matrix Analysis and Applications, 30(3):1254–1279,
2008.

[8] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55):1–21, 2019.

[9] Mark Fannes, Bruno Nachtergaele, and Reinhard F Werner. Finitely correlated states on
quantum spin chains. Communications in mathematical physics, 144(3):443–490, 1992.

[10] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics,
pages 315–323, 2011.

[11] Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio.
Maxout networks. arXiv preprint arXiv:1302.4389, 2013.

[12] Caglar Gulcehre, Kyunghyun Cho, Razvan Pascanu, and Yoshua Bengio. Learned-norm pooling
for deep feedforward and recurrent neural networks. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 530–546. Springer, 2014.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[14] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent. Cited on, 14(8), 2012.

[15] Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of
Mathematics and Physics, 6(1-4):164–189, 1927.

[16] Ming Hou, Jiajia Tang, Jianhai Zhang, Wanzeng Kong, and Qibin Zhao. Deep multimodal
multilinear fusion with high-order polynomial pooling. In Advances in Neural Information
Processing Systems, pages 12113–12122, 2019.

[17] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 7132–7141, 2018.

[18] Zihao Huang, Chao Li, Feng Duan, and Qibin Zhao. H-owan: Multi-distorted image restoration
with tensor 1x1 convolution. arXiv preprint arXiv:2001.10853, 2020.

7

[19] Joe Kileel, Matthew Trager, and Joan Bruna. On the expressive power of deep polynomial
neural networks. In Advances in Neural Information Processing Systems, pages 10310–10319,
2019.

[20] Jin-Hwa Kim, Jaehyun Jun, and Byoung-Tak Zhang. Bilinear attention networks. In Advances
in Neural Information Processing Systems, pages 1564–1574, 2018.

[21] Ron Kohavi, David H Wolpert, et al. Bias plus variance decomposition for zero-one loss
functions. In ICML, volume 96, pages 275–83, 1996.

[22] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review,
51(3):455–500, 2009.

[23] Jean Kossaifi, Adrian Bulat, Georgios Tzimiropoulos, and Maja Pantic. T-net: Parametrizing
fully convolutional nets with a single high-order tensor. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 7822–7831, 2019.

[24] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[25] Jason Liang, Elliot Meyerson, and Risto Miikkulainen. Evolutionary architecture search for deep
multitask networks. In Proceedings of the Genetic and Evolutionary Computation Conference,
pages 466–473, 2018.

[26] Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational efficiency of training
neural networks. In Advances in neural information processing systems, pages 855–863, 2014.

[27] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb, Erik Goodman,
and Wolfgang Banzhaf. Nsga-net: A multi-objective genetic algorithm for neural architecture
search. 2018.

[28] Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan, Yuexian Hou, Ming Zhou, and Dawei Song.
A tensorized transformer for language modeling. In Advances in Neural Information Processing
Systems, pages 2229–2239, 2019.

[29] Jiawang Nie. Low rank symmetric tensor approximations. SIAM Journal on Matrix Analysis
and Applications, 38(4):1517–1540, 2017.

[30] Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing
neural networks. In Advances in neural information processing systems, pages 442–450, 2015.

[31] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing,
33(5):2295–2317, 2011.

[32] Liqun Qi. Eigenvalues of a real supersymmetric tensor. Journal of Symbolic Computation,
40(6):1302–1324, 2005.

[33] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pages 4780–4789, 2019.

[34] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015.

[35] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4510–4520, 2018.

[36] IV Sergienko and VP Shylo. Problems of discrete optimization: Challenges and main approaches
to solve them. Cybernetics and Systems Analysis, 42(4):465–482, 2006.

8

[37] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning with neural
tensor networks for knowledge base completion. In Advances in neural information processing
systems, pages 926–934, 2013.

[38] Edwin Stoudenmire and David J Schwab. Supervised learning with tensor networks. In
Advances in Neural Information Processing Systems, pages 4799–4807, 2016.

[39] Brook Taylor. Methodus incrementorum directa & inversa. Inny, 1717.

[40] Yuan Xie, Shuhang Gu, Yan Liu, Wangmeng Zuo, Wensheng Zhang, and Lei Zhang. Weighted
schatten p-norm minimization for image denoising and background subtraction. IEEE transac-
tions on image processing, 25(10):4842–4857, 2016.

[41] Jiyan Yang and Alex Gittens. Tensor machines for learning target-specific polynomial features.
arXiv preprint arXiv:1504.01697, 2015.

[42] Rose Yu, Stephan Zheng, Anima Anandkumar, and Yisong Yue. Long-term forecasting using
higher order tensor rnns. arXiv preprint arXiv:1711.00073, 2017.

[43] Qibin Zhao, Masashi Sugiyama, Longhao Yuan, and Andrzej Cichocki. Learning efficient
tensor representations with ring-structured networks. In ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8608–8612. IEEE,
2019.

[44] Qibin Zhao, Guoxu Zhou, Shengli Xie, Liqing Zhang, and Andrzej Cichocki. Tensor ring
decomposition. arXiv preprint arXiv:1606.05535, 2016.

9

	Introduction
	Preliminaries and basic setup
	Tensor network (TN) decomposition

	Fractional tensor network (FrTN) induced learning models
	Fractional SCP decomposition
	Fractional STR decomposition
	What if tensor train (TT)?
	A general form of FrTN in neural networks

	Experiments and Discussions
	Discussion

