
Multi-Graph Tensor Networks

Yao Lei Xu, Kriton Konstantinidis, Danilo P. Mandic
Department of Electrical and Electronic Engineering

Imperial College London
{yao.xu15,k.konstantinidis19,d.mandic}@imperial.ac.uk

Abstract

The irregular and multi-modal nature of numerous modern data sources poses
serious challenges for traditional deep learning algorithms. To this end, recent
efforts have generalized existing algorithms to irregular domains through graphs,
with the aim to gain additional insights from data through the underlying graph
topology. At the same time, tensor-based methods have demonstrated promising
results in bypassing the bottlenecks imposed by the Curse of Dimensionality. In
this paper, we introduce a novel Multi-Graph Tensor Network (MGTN) framework,
which exploits both the ability of graphs to handle irregular data sources and the
compression properties of tensor networks in a deep learning setting. The potential
of the proposed framework is demonstrated through an MGTN based deep Q agent
for Foreign Exchange (FOREX) algorithmic trading. By virtue of the MGTN,
a FOREX currency graph is leveraged to impose an economically meaningful
structure on this demanding task, resulting in a highly superior performance against
three competing models and at a drastically lower complexity.

1 Introduction

Deep learning techniques have been at the core of machine learning research for over a decade and
have proved successful in a number of areas, including computer vision and speech processing [1].
However, as we enter the era of Big Data, the associated multi-modal and irregular nature of data
is posing stern challenges to traditional learning systems, also owing to the sheer volume, variety,
veracity and velocity of modern data sources [2]. To this end, it is necessary to generalize deep
learning approaches to handle such irregular and multi-modal data.

Some of the most successful approaches for data analytics on irregular domains resort to graph
signal processing techniques, because of their ability to provide insights into both the data acquisition
process and their generative mechanisms [3]. By virtue of their ability to account for the underlying
data structure, graph-based learning algorithms have proved advantageous in applications where the
graph is known a-priori [4]. When it comes to exceedingly large multi-modal data, tensor-based
methods have demonstrated their potential in areas including multi-modal learning [5], compression
of large-dimensional data [6], and interpretability of neural networks [7]. In particular, tensor
decomposition (TD) and tensor networks (TN) leverage the multi-modality of many Big Data
applications to compress large-dimensional data while preserving their structure and interpretability,
thus effectively bypassing the bottlenecks imposed by the Curse of Dimensionality [2].

Despite progress in these individual fields, the full potential arising from the combination of tensors,
graphs, and neural networks has only begun to be explored. One such recent approach is the
Recurrent Graph Tensor Network (RGTN) [8], which provides a framework for modelling multi-
modal sequential data, through a unifying account of the expressive power of graphs and tensor
networks. The initial RGTN model has been introduced primarily for sequential data and is therefore
only defined on a single graph domain, often impractical for Big Data applications.

First Workshop on Quantum Tensor Networks in Machine Learning, 34th Conference on Neural Information
Processing Systems (NeurIPS 2020).



To provide a general framework that fully exploits the advantages of both graphs and tensors in a deep
learning setting, we here generalize the RGTN concept in [8] to introduce the novel Multi-Graph
Tensor Network (MGTN). In this way, the proposed MGTN is capable of handling irregular data
residing on multiple graph domains, while simultaneously leveraging the compression properties of
tensor networks to enhance modelling power and reduce parameter complexity.

The proposed model is verified on the task of Foreign Exchange (FOREX) algorithmic trading,
a notoriously challenging paradigm characterized by highly irregular and noisy data [9]. More
specifically, we consider a deep Q trading agent [10], where an MGTN is used to approximate the
action values. By combining the advantages of graphs, tensors, and neural networks, the proposed
MGTN agent is shown to yield highly superior performance against three competing agents. This
setting is general enough to suggest the use of MGTN in a range of other application domains,
including social networks, communication networks, and cognitive neuroscience.

The rest of the paper is organized as follows. We first briefly present the theoretical background
necessary to follow this work in Section 2. The MGTN framework is introduced in Section 3,
followed by an in-depth analysis of how FOREX algorithmic trading can be naturally modelled with
an MGTN in Section 4. Numerical experiments are provided in Section 5 and Conclusion along with
promising future research directions and potential MGTN application domains are given in Section 6.

2 Preliminaries

2.1 Tensors and Tensor Networks

A real-valued tensor is a multidimensional array, denoted by a calligraphic font, e.g., X ∈ RI1×···×IN ,
where N is the order of the tensor and In (1 ≤ n ≤ N ) the size of its nth mode. Matrices (denoted
by bold capital letters, e.g., X ∈ RI1×I2) can be seen as order-2 tensors (N = 2), vectors (denoted
by bold lower-case letters, e.g., x ∈ RI ) can be seen as order-1 tensors (N = 1), and scalars
(denoted by lower-case letters, e.g., x ∈ R) are tensors of order N = 0. A specific entry of a tensor
X ∈ RI1×···×IN is given by xi1,...,iN ∈ R. The tensor indices in this paper are grouped according to
the Little-Endian convention [11].

Kronecker Product A (left) Kronecker product between two tensors, A ∈ RI1×···×IN and B ∈
RJ1×···×JN , denoted by ⊗, yields a tensor C ∈ RI1J1×···×INJN , of the same order, with entries
ci1j1,...,iN jN = ai1,...,iN bj1,...,jN , where injn = jn + (in − 1)Jn [2].

Matricization and Tensorization The mode-n matricization of a tensor X ∈ RI1×···×IN
reshapes the multidimensional array into a matrix X(n) ∈ RIn×I1I2···In−1In+1···IN with
(x(n))in,i1...in−1in+1...iN

= xi1,...,iN . The inverse process, Tensorization, is denoted by ten(·).

Tensor Contraction An (m,n)-contraction [2] denoted by ×mn , between an order-N tensor A ∈
RI1×···×In×···×IN and an order-M tensor B ∈ RJ1×···×Jm×···×JM , where In = Jm, yields a
third order-(N +M − 2) tensor, C ∈ RI1×···×In−1×In+1×···×IN×J1×···×Jm−1×Jm+1×···×JM , where
ci1,...,in−1,in+1,...,iN ,j1,...,jm−1,jm+1,...,jM =

∑In
in=1 ai1,...,in−1,in,in+1,...,iN bj1,...,jm−1,in,jm+1,...,jM .

Tensor Network A Tensor Network (TN) is a tensor architecture comprised of smaller-order core
tensors which are connected by tensor contractions, where each tensor is represented as a node, while
the number of edges that extends from that node corresponds to tensor order [6]. If two nodes are
connected through an edge, it represents a linear contraction between two tensors over modes of
equal dimensions.

Tensor Decomposition Special instances of tensor networks include those based on Tensor De-
composition (TD) methods, which approximate high-order, large-dimension tensors via contrac-
tions of smaller core tensors, therefore drastically reducing the computational complexity in ten-
sor manipulation while preserving the data structure [6]. We here consider the Tensor-Train de-
composition (TTD) [12], a highly efficient TD method that can decompose a large order-N ten-
sor, X ∈ RI1×I2×···×IN , into interconnected smaller core tensors, G(n) ∈ RRn−1×In×Rn , as
X = G(1)×1

2G(2)×1
3G(3)×1

3 · · ·×1
3G(N), where the set ofRn for n = 0, . . . , N andR0 = RN = 1

is referred to as the TT-rank. The compression properties of TTD can be applied to significantly
compress neural networks while maintaining comparable performance [13].

2



2.2 Graph Signal Processing

A graph, G = {V, E}, is defined by a set of N vertices (or nodes) vn ⊂ V for n = 1, . . . , N , and
a set of edges connecting the nth and mth vertex en,m = (vn, vm) ∈ E , for n = 1, . . . , N and
m = 1, . . . , N . A signal on a given graph is a defined by a vector f ∈ RN such that f : V → R,
which associates a signal value to every node on the graph [14]. A graph can be fully described in
terms of its weighted adjacency matrix, A ∈ RN×N , such that an,m > 0 if en,m ∈ E , and an,m = 0

if en,m /∈ E . The adjacency matrix can also be represented in its normalized form as Ã = D
1
2 AD

1
2 ,

where D ∈ RN×N is the diagonal degree matrix such that dn,n =
∑
m an,m.

Graph Shift Filters The weighted adjacency matrix can be used as a shift operator to filter signals
on graphs. Such a graph filter represents a linear combination of vertex-shifted graph signals, which
captures graph information at a local level [15]. For example, the operation g = (I + A)f produces
a filtered signal, g ∈ RN , such that gn = fn +

∑
m∈Ωn

an,mfm, where Ωn denotes the 1-hop
neighbours that are directly connected to the n-th node. For M graph signals stacked in a matrix
form as F ∈ RN×M , the resulting graph filter can be compactly written as G = (I + A)F [15].

2.3 Recurrent Graph Tensor Networks

A Recurrent Graph Tensor Network (RGTN) [8] models sequential data through a time-based,
multi-linear graph filter in tensor-network format.

gRGTN A general RGTN (gRGTN) extracts a feature map Y ∈ RJ1×I1 from sequential data,
X ∈ RJ0×I1 , via the forward pass given by Y = σ(R×1,2

3,4 W(x) ×1
2 X), where W(x) ∈ RJ1×J0 is

the input weight matrix and R ∈ RJ1×I1×J1×I1 is the multi-linear time-graph filter. Specifically, R
is defined as R = ten(I + (A⊗W(r))), where I ∈ RJ1I1×J1I1 is the identity matrix, A ∈ RI1×I1 is
the time-vertex based graph adjacency matrix with I1 time-steps represented as graph nodes, and the
weight matrix W(r) ∈ RJ1×J1 models information propagation between successive time-steps over
J1 features.

fRGTN The fast RGTN (fRGTN) is defined by approximating W(r) ≈ I in gRGTN, which leads to
a reduced forward pass, Y = σ(R×2

2 W(x) ×1
2 X), where R ∈ RI1×I1 is a standard graph shift filter

defined as R = (I + A), as discussed in Section 2.2. The lower parameter complexity over gRGTN
is due to the identity approximation of W(r).

fRGTN-TT If the problem is inherently multi-modal, then the large dense layer matrices of the
fRGTN can be tensorized and represented in the Tensor-Train format, as discussed in [13]. This
leads to the highly efficient fRGTN-TT model, which preserves the inherent multi-modality and has
drastically lower parameter complexity.

2.4 Reinforcement Learning

In reinforcement learning (RL), at each time step t, a RL agent observes the state st of the environment,
takes an action at and receives a reward rt from the environment. The RL agent then learns a decision
policy π∗ from the pairs (at, rt), that is optimal in maximizing the long-term reward r =

∑
t rt.

Q-Learning In Q-Learning, the goal is to learn a function Q(s, a) that maps from the state s and
action a to the expected accumulated reward. In other words, it estimates the reward that an agent
will receive when it performs action a under the environment state s. More precisely, the function Q
that we aim to learn is given by: Qπ(s, a) = E[Rt|st = s, at = a, π], with π as the decision policy
and Rt the accumulated reward given by Rt =

∑
tγ
t′−trt′ , where γ < 1 is the discount factor used

to give immediate rewards a higher value. The optimal Q-function that results in the best policy π∗
which maximizes the expected reward is given by Q∗(s, a) = maxπQπ(s, a). Within Q-Learning,
this function is estimated iteratively using the Bellman equation, Q∗(s, a) = rt + γmaxa′Q

∗(s′, a′),
where s′ is the new state after taking action a under state s.

Deep Q-Learning A deep neural network in this context is trained by minimizing the difference
between the two sides of the Bellman equation, using the loss function L(θi) = E(s,a)∼ρ(·)[(y −
Q(s, a; θi))

2], where i denotes the training iteration and θ the weights of the deep Q-network. The
training examples are in the form (s, a, r, s′), where ρ(s, a) denotes their distribution, while y is

3



the prediction of Q(s, a) given by the Bellman equation y = r + γmaxa′Q
∗(s′, a′; θi−1)|(s, a). To

alleviate the issue of non-stationary targets, experience replay is used, whereby past experiences
are stored in a buffer, from which a batch is sampled at every time instant to train the network with
back-propagation and stochastic gradient descent.

Double Deep Q-Learning A notorious issue with the deep Q-Learning approach is its tendency
towards instability and overestimation of action values. This is a result of the fact that both the
current Q value, Q(s, a), and estimated Q value, y = r + γmaxa′Q

∗(s′, a′), are computed by a
single Q-network. To mitigate this issue, we employ Double Deep Q-Learning [16], where a separate
target network, Q̃, is used to compute the estimated Q value. The weights of Q̃ are updated at the
end of every training episode by hard copying the weights of Q.

3 Multi-Graph Tensor Networks

The RGTN model introduced in [8] was developed to model time-series problems related to sequential
data, and is only defined for a single graph domain. To make the concept suitable for applications
beyond time-series and in a Big Data setting, we next generalize the results from [8] to develop a
Multi-Graph Tensor Network, which is capable of handling multi-modal data defined on multiple
graph domains that is not limited to time-series modelling.

3.1 General Multi-Linear Graph Filter

The time-based multi-linear graph filter, R, was developed in [8] to model time-series problems
through a time-graph adjacency matrix that reflects the temporal flow of information, as discussed in
Section 2.3. For this filter to be extended to other domains, the underlying graph topology needs to be
modified. More generally, given a weighted graph adjacency matrix, A ∈ RI1×I1 , we can construct a
multi-linear graph filter in the tensor domain, F ∈ RJ1×I1×J1×I1 , as

F = ten (I + (A⊗ P)) (1)

where the propagation matrix P ∈ RJ1×J1 models the flow of information between neighbouring
vertices (as opposed to successive time-steps in the RGTN case). This allows us to generalize the
multi-linear graph filter F to any given graph domain of any data modality.

3.2 General Multi-Graph Tensor Network

Consider a multi-graph learning problem where the input is an order-(M + 1) tensor X ∈
RJ0×I1×I2×···×IM with J0 features indexed along M physical modes {I1, I2, . . . , IM}, such that a
graph G(m) is associated with each of the Im modes, m = 1, . . . ,M . For this problem, we define:

1. A = {A(1),A(2), . . . ,A(M)}, a set of adjacency matrices A(m) ∈ RIm×Im constructed
from the corresponding graphs G(m).

2. W = {W(1),W(2), . . . ,W(M)}, a set of weight matrices W(m) ∈ RJm×Jm−1 used for
feature transforms, where Jm, for m = 1, . . . ,M controls the number of feature maps at
every m.

3. P = {P(1),P(2), . . . ,P(M)}, a set of propagation matrices P(m) ∈ RJm×Jm , modelling the
propagation of information over the neighbours of the graph G(m).

Using the above objects and an optional activation function, σ(·), we can now define the general
Multi-Graph Tensor Network (gMGTN) layer characterized by the following forward pass:

Y = σ
(
F (M) ×1,M+1

3,4 W(M) ×1
2 · · · ×1

2 F (2) ×1,3
3,4 W(2) ×1

2 F (1) ×1,2
3,4 W(1) ×1

2 X
)

(2)

where F (m) = ten(I + (A(m) ⊗ P(m))). The so defined forward pass generates a feature map,
Y ∈ RJM×I1×···×IM , from the input tensor, X , through a series of multi-linear graph filter and
weight matrix contractions, which essentially iterates the graph filtering operation across all M graph
domains.

4



3.3 Fast Multi-Graph Tensor Network

The gMGTN introduced in the previous section learns a propagation matrix, P(m), and a weight
matrix, W(m), for each of the M graphs. For simplicity, let Jm = J for m = 1, . . . ,M ; this results
in a parameter complexity of O(MJ2), which is linear in the number of graphs, M , and quadratic in
the size of feature maps, J . This hinders the performance of gMGTN, since computation can become
intractable for high dimensional multi-graph problems. To that end, we develop the fast Multi-Graph
Tensor Network (fMGTN) as a low-complexity variant of the gMGTN.

Similar to [8], we can reduce the parameter complexity of gMGTN by: (i) approximating P(m) ≈ I
for m = 1, . . . ,M ; and (ii) using one single weight matrix, W(x) ∈ RJ1×J0 , for all of the graph
domains, where J1 controls the number of hidden units (feature maps). This allows us to define the
fMGTN with the following reduced forward pass

Y = σ
(
F(M) ×M+1

2 · · · ×4
2 F

(2) ×3
2 F

(1) ×2
2 W(1) ×1

2 X
)

(3)

where F(m) = (I + A(m)) is a standard graph shift filter as discussed in Section 2.2. In contrast to
the gMGTN model, the proposed fMGTN does not have to learn P(m) or W(m), which reduces the
parameter complexity of the forward pass to O(J2) but at the cost of lower expressive power.

Finally, after extracting the feature map, Y ∈ RJ1×I1×···×IM , it is customary to flatten the extracted
features and pass them through dense layers to generate the final output. To further reduce the
complexity, the weight matrices of the dense layers can be tensorized and represented in TT format,
as discussed in [13]. This further reduces the number of parameters, while maintaining compatibility
with the inherent multi-modal nature of the problem. For clarity, an example of a fMGTN model
which implements this series of contractions is shown in Figure 1, using tensor network notation.

Figure 1: Tensor network representation of the fast Multi-Graph Tensor Network (fMGTN) used
for our proposed experiment. The section encircled in dotted line denotes the multi-graph filtering
operation for M = 2 as per equation (3). The yellow region denotes a tensorized dense layer weight
matrix, represented in the Tensor-Train format. The input data used for our experiment is an order-3
tensor with J0 = 4 pricing features, I1 = 30 past time-steps, and I2 = 9 currencies, as discussed
in Section 5. Note that we define a time-domain graph filter and a currency-domain graph filter for
input data modes of dimensions I1 and I2, respectively.

4 Financial Environment

4.1 The Foreign Exchange Market and the Carry Graph

The FOREX market allows participants to trade pairs of currencies at a given spot rate, which
measures the value of a currency with respect to another currency at a given instant (e.g. EUR/USD
spot rate of 1.2 implies that 1 Euro can be exchanged for 1.2 US Dollars). Alternatively, the

5



participants can engage in forward contracts that allows them to exchange pairs of currencies on an
agreed future date and at a specified forward rate. If the forward rate of a given currency pair is
higher than the current spot rate, then the numerator currency is expected to increase in value against
the denominator currency and vice-versa.

There are many factors that can affect the movements of spot rates, although the most important factor
is arguably the carry factor: a tendency for high interest rate currencies to generate higher returns
than the low interest rate ones. According to the interest-rate-parity theory [17], the expectation of
currency pairs moving in different directions, depending on the interest rate differential, is reflected
in the difference between the spot rate and the forward rate.

Therefore, for a pair of currencies, i and j, we can construct a pairwise carry signal by computing
ci,j = 1− rf

rs
, where rf and rs denote respectively the forward rate and the spot rate of the currency

pair. Finally, we can construct a carry graph adjacency matrix A such that its entries ai,j depend on
the magnitude of the carry signal ci,j . Figure 2 shows an example of the so constructed carry graph.

Figure 2: An example of FOREX carry graph. Thicker edges indicate stronger carry signal.

4.2 Characteristics of FOREX Data

The FOREX data are characterized by a number of properties that make classical machine learning
techniques inadequate for their modelling; these include:

• FOREX data are multi-modal in nature, since they contain multiple pricing information
indexed over time and across several related assets, which results in large dimensional
tensors whose computation suffers from the Curse of Dimensionality.

• Financial data is known to have low signal-to-noise ratio due to the arbitrage forces in the
market [9], which makes training particularly susceptible to overfitting.

• Various market factors can influence the pricing at different degrees depending on the
time-horizon; this constitutes a multi-resolution problem that not many machine learning
algorithms can handle.

The proposed MGTN is particularly suited to address the above challenges, as:

• The multi-modal nature of FOREX data naturally leads to a tensor representation, which
can be readily handled by the tensor network structure of our proposed model.

• The model can leverage the powerful low-rank compression and regularization properties of
tensor networks, which are inherently immune to the Curse of Dimensionality and provide a
regularization framework via TD that does not degrade the underlying data structure.

• Long-term market factors such as carry can be encapsulated in graph filters that naturally
appeal to the pair-wise formulation of the FOREX data; this allows to process high frequency
pricing data through an economically meaningful low-frequency graph topology.

6



5 Experiments

To demonstrate the applicability and superiority of the proposed framework for the task of algorithmic
trading, we use the fMGTN model as a feature extraction part of the deep Q network of a trading
agent, and evaluate its performance against three commonly used agents based on: (i) Gated Recurrent
Unit (GRU) Neural Network [18], (ii) Tensor-Train Neural Network (TTNN) [13], and (iii) Graph
Convolutional Network (GCN) [19].

Data Description Minute-wise spot-rate pricing data were used for the period between October 1st

2019 and October 9th 2019 for a total of 9 currencies. Training took place over the first 7 days,
while out-of-sample performance evaluation was performed in the last 2 days. Our features include
Open/High/Low/Close (OHLC) spot-rates of the 9 currencies presented in Figure 2.

Data Pre-Processing The pricing data were pre-processed by computing the log-returns defined
as rt = ln(pt)− ln(pt−1), which measure the log-price difference between successive time-steps.
The log-returns were then aggregated into multi-modal input samples, such that each sample, X ∈
RJ0×I1×I2 , contains log-returns indexed along J0 = 4 features (OHLC), I1 = 30 past time-steps,
and I2 = 9 currencies. Such multi-modal input data samples can be readily processed by the TTNN
and the proposed fMGTN in their natural tensor form, as shown in Figure 1. However, the input
samples were matricized as X ∈ RI1×J0I2 and X ∈ RI2×J0I1 for compatibility with the GRU and
the GCN agents, respectively.

Graph Filter Formulation For the given FOREX input data, we formulate the problem as a multi-
graph learning problem, where each sample contains J0 features indexed along I1 time-steps and I2
currencies, whereby a time-graph and a currency-graph are associated with the time mode and the
currency mode respectively. More precisely, we formulate the time-graph in the same way as in [8]
for a total of I1 = 30 time-steps, while the currency-graph was based on the carry-graph as discussed
in Section 4.1. Finally, the respective graph filter for our fMGTN model was computed as discussed
in Section 3.3. This results in graph filters F(1) and F(2), as illustrated in Figure 1.

Agent Specification For comparable results, the action value approximation network had the same
specifications across all agents, with the sole difference being the feature extraction method. More
specifically, each agent was based on a 3-layer architecture: (i) a feature extraction layer with 16
units and ReLU activation, (ii) a dense layer with 27 units and ReLU activation, and (iii) a linear
output layer with 2 units corresponding to buy and sell action values. Each agent uses a different
feature extraction layer, which can be based on fMGTN, GRU, TTNN, or GCN. In addition, due to
their inherent tensor representation, the dense layer following the fMGTN and TTNN layers was
tensorized and represented in TT format. All agents were trained using ADAM with a learning rate
of 2 · 10−4 and a mini-batch size of 64 for 15 episodes. Finally, the reward of the agents consisted of
minute-wise log-returns. Our models were implemented using Tensorflow 2.3 1 2.

Performance Metrics Five different financial metrics were used to assess the performance of the
agents: Total return measures the total percentage returns generated by the agent in the episode;
Sharpe ratio measures the risk-adjusted return generated by the agent, which is computed as µr

σr
where

µr is the average log-return and σr the standard deviation of log-returns; Sortino ratio computes the
risk-adjusted return as µr

σd
r

, where σdr measures the standard deviation of negative log-returns; Max
Drawdown measures the maximum percentage loss incurred by the agent during a consecutive period;
Hit Rate measures the percentage of profitable trades to total trades.

Experimental Results Highly superior performance for the fMGTN based agent was obtained across
a basket of European currencies, both in terms of generated profits and other common financial
metrics. As shown in Figure 3, the fMGTN agent generated substantial profit (0.8%) during the
out-of-sample testing period. Table 5 summarizes the performance of the considered agents, with
fMGTN outperforming the other considered agents across a multitude of the most commonly used
financial performance metrics. Finally, fMGTN achieved the best performance at a drastically lower
parameter complexity, using up to 90% less trainable parameters compared to the GCN agent, and
up to 80% less compared to the GRU agent, as shown in Table 2. This confirms the potential of the
proposed framework for integrating graphs, tensors, and neural networks, which proved superior to
any of the three components acting individually.

1github.com/gylx/GTNRL-Trading
2The GCN implementation was adapted from github.com/vermaMachineLearning/keras-deep-graph-learning

7



Figure 3: Out-of-sample trading performance of the considered agents, averaged over five European
currencies. The vertical axis represents the investment growth of an initial value of 1000$, while the
horizontal axis represents time in minutes.

Agent Total Return (%) Sharpe Ratio Sortino Ratio Max Drawdown (%) Hit Rate (%)

fMGTN 0.8018 0.0445 0.0604 0.2893 52.8056

GRU 0.0260 0.0012 0.0015 0.3477 50.4008

TTNN 0.1628 0.0064 0.0083 0.3493 50.6346

GCN -0.0538 -0.0032 -0.0040 0.4180 50.2338

Table 1: Performance comparison for the considered agents

fMGTN GRU TTNN GCN

531 3107 451 5891

Table 2: Number of trainable parameters of the considered agents

6 Conclusion

We have introduced a novel framework that embarks upon the advantages of both graphs and tensors,
to provide an efficient and meaningful modelling strategy in a deep learning setting. The so introduced
Multi-Graph-Tensor-Network (MGTN) has been shown to be capable of handling irregular data
residing on multiple graph domains, while simultaneously leveraging on the compression properties
of tensor networks to enhance the modelling power and drastically reduce parameter complexity.
The effectiveness of the proposed model has been demonstrated on FOREX algorithmic trading, a
challenging task owing to multiple sources of uncertainty and multi-modality. Experimental results
have demonstrated the superiority of the proposed MGTN framework, which has generalized better in
the highly irregular and noisy financial environment than the Recurrent Neural Network, Tensor-Train
Neural Network, and Graph Convolutional Network based agents.

Future research directions include work leveraging on the versatility of the proposed framework to
investigate its potential in numerous applications that share the modelling setup considered here.
For example, the graph filters within the MGTN allow for the modelling of irregular data defined
on one or multiple graph domains, a typical setting in social networks, recommender systems, and
traffic forecasting. In addition, the tensor network structure of the MGTN allows for the modelling
of high-dimensional data at a low complexity, which appeals to problems including multi-sensor
processing, video classification, and natural language processing. Future research on spectral MGTN
models can also potentially improve the modelling power of MGTN through spectral graph filtering
techniques.

8



Broader Impact

The proposed multi-graph tensor network framework exploits the convergence of two successful but
independently considered areas of graphs and tensor networks. This equips the MGTN framework
with the ability to have considerable impact in applications where data sources come from irregular
domains and are intrinsically high dimensional. This is a typical scenario in modern applications in
finance, social networks, and physical sciences, to name but a few.

An immediate impact of our work, as illustrated through the considered experiment, may be in the
creation of successful FOREX algorithmic trading strategies that efficiently model the underlying
variable coupling through the proposed multi-graph domain. Another potential outreach of our work
is on the modelling of molecule structures through large graphs, that could in turn lead to more
efficient drug discovery.

The impact arising from model failure and data bias is identical to those of supervised learning models
in general. Finally, we have not identified anyone that can be put at disadvantage from this work.

Acknowledgments and Disclosure of Funding

Y.L.X. is supported by an EPSRC Doctoral Scholarship. K.K. is supported by an EPSRC International
Doctoral Scholarship.

References
[1] Q. Zhang, L. T Yang, Z. Chen, and P. Li. A survey on deep learning for big data. Information Fusion, 42:

146–157, 2018.

[2] A. Cichocki. Era of big data processing: A new approach via tensor networks and tensor decompositions.
In Proceedings of the International Workshop on Smart Info-Media Systems in Asia, March 2014.

[3] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains.
IEEE Signal Processing Magazine, 30(3):83–98, 2013.

[4] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A comprehensive survey on graph neural
networks. IEEE Transactions on Neural Networks and Learning Systems, pages 1–21, 2020.

[5] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and H. A. PHAN. Tensor
decompositions for signal processing applications: From two-way to multiway component analysis. IEEE
Signal Processing Magazine, 32(2):145–163, March 2015.

[6] A. Cichocki, N. Lee, I. Oseledets, A. Phan, Q. Zhao, D. P. Mandic, et al. Tensor networks for dimensionality
reduction and large-scale optimization: Part 1 low-rank tensor decompositions. Foundations and Trends R©
in Machine Learning, 9(4-5):249–429, 2016.

[7] N. Cohen, O. Sharir, and A. Shashua. On the expressive power of deep learning: A tensor analysis. In
Proceedings of the Conference on Learning Theory, pages 698–728, 2016.

[8] Y. L. Xu and D. P. Mandic. Recurrent graph tensor networks. arXiv preprint arXiv:2009.08727, September
2020.

[9] M. L. de Prado. Machine Learning for Asset Managers. Cambridge University Press, 2020.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing
Atari with deep reinforcement learning. ArXiv e-prints, December 2013.

[11] S.V. Dolgov and D.V. Savostyanov. Alternating minimal energy methods for linear systems in higher
dimensions. SIAM Journal on Scientific Computing, 36(5):A2248–A2271, 2014.

[12] I. V. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):2295–2317,
2011.

[13] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov. Tensorizing neural networks. In Proceedings of
the Advances in Neural Information Processing Systems (NIPS), pages 442–450, 2015.

9



[14] L. Stankovic, D. Mandic, M. Dakovic, M. Brajovic, B. Scalzo, and T. Constantinides. Graph signal
processing–Part I: Graphs, graph spectra, and spectral clustering. arXiv preprint arXiv:1907.03467, 2019.

[15] L. Stankovic, D. Mandic, M. Dakovic, M. Brajovic, B. Scalzo, and A. G. Constantinides. Graph signal
processing–Part II: Processing and analyzing signals on graphs. arXiv preprint arXiv:1909.10325, 2019.

[16] H. V. Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning. In Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence, September 2015.

[17] R. Z. Aliber. The interest rate parity theorem: A reinterpretation. Journal of political economy, 81(6):
1451–1459, 1973.

[18] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural networks on
sequence modeling. In Proceedings of NIPS 2014 Workshop on Deep Learning, December 2014.

[19] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations (ICLR), 2017.

10


	Introduction
	Preliminaries
	Tensors and Tensor Networks
	Graph Signal Processing
	Recurrent Graph Tensor Networks
	Reinforcement Learning

	Multi-Graph Tensor Networks
	General Multi-Linear Graph Filter
	General Multi-Graph Tensor Network
	Fast Multi-Graph Tensor Network

	Financial Environment
	The Foreign Exchange Market and the Carry Graph
	Characteristics of FOREX Data

	Experiments
	Conclusion

