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Abstract

Tiny object classification problem exists in many machine learning applications like
medical imaging or remote sensing, where the object of interest usually occupies a
small region of the whole image. It is challenging to design an efficient machine
learning model with respect to tiny object of interest. Current neural network
structures are unable to deal with tiny object efficiently because they are mainly
developed for images featured by large scale objects. However, in quantum physics,
there is a great theoretical foundation guiding us to analyze the target function
for image classification regarding to specific objects size ratio. In our work, we
apply Tensor Networks to solve this arising tough machine learning problem. First,
we summarize the previous work that connects quantum spin model to image
classification and bring the theory into the scenario of tiny object classification.
Second, we propose using 2D multi-scale entanglement renormalization ansatz
(MERA) to classify tiny objects in image. In the end, our experimental results
indicate that tensor network models are effective for tiny object classification
problem and potentially will beat state-of-the-art. Our codes will be available
online https://github.com/timqqt/MERA_Image_Classification.

1 Introduction

Neural networks have achieved the state-of-the-art performance in image classification. However,
there are still several tasks where neural network may fall short. Typically, in tiny object classification
problem, the task is to classify a very small object in a huge uncorrelated background, where the
input has very low signal-to-noise ratio. Recent works showed that with limited size dataset, the
convolutional neural networks (CNNs) cannot exceed performance than random classifier on very
low signal-to-noise ratio problem. It is very challenging to develop machine learning model regarding
to a specific signal-to-noise ratio based on current deep learning theory. However, we see the light in
quantum physics. Entanglement entropy bound theory builds a bridge for object ratio and function
complexity [7]. Motivated by the challenge of tiny object classification, we explore the potential of a
tensor network model which can efficiently simulate quantum many-body states in multi-scale.

Recently, there are an increasing number of emerging tensor network applications in machine learning
[3[4]. These methods apply Matrix Product State (MPS) to classify MNIST digits. The inputs of
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these model are flattened 1D tensors, which ignores the spatial correlation of image. And in [§]], the
author also utilized MERA for image classification, which inspires our work. Here, we target at a
more interesting and practical valuable problem, namely tiny object classification.

In this work, we propose to use 2D multi-scale entanglement renormalization ansatz (MERA) inspired
from [[7] to match the entanglement entropy of target function by a multi-scale model. Second, we
present 3 experiments to illustrate how to successfully train a MERA-structure tensor network model
and show the promising results for incorporating quantum physics method into deep learning. Our
proposed MERA model can be trained end-to-end under current popular automatic differential
framework like TensorFlow and achieves comparable results to current neural network method.

2 Problem Statement

We model the image classification problem by a quantum spin model. We then use the entanglement
entropy to formulate required function complexity for classification of tiny objects in an image.
Finally, we present that MERA can be a promising solution where CNN may fails to perform
efficiently.

2.1 Problem Formulation for Image Classification by Quantum Spin Model

Recent works [55 16; [7]] indicate that the Hilbert space of target function for image classification
problems are equivalent to a quantum spin model. Considering the set of all functions mapping
images to classes {0,1} as Hz = g\f : S — C}. Itis easy to show that the function space Hz
is a Hilbert space with dimension 2. Coincidentally, a quantum many-body spin system is also
dealing with a Hilbert space H o with dimension 2V . In [7]], the author pointed out that 77 and
‘H o are equivalent and isomorphic. It is also easy to connect the quantum spin model to the target
function model for image classification. For a 1/2 spin model, each quantum state has probability
for two directions of spins. For the target function of image classification problem, each input pixel
contributes probability to the image being one of two classes.

We define a linear transformation 7' : Hz — Ho . If we have a target function ' € Hz for any
image classification problem, we can find this function by looking for a corresponding representation
in H o, which is a golden quantum state:

W) =D F(s)]s), (1)

ses
where s is the basis of 7o thought of as an image in the set S.

Now we have the theoretical foundation which implies that techniques applied on Hilbert space of
quantum spin model can also deal with image classification problem. In next section, we will describe
how the entanglement entropy formulate the target function F'(s) for image classification.

2.2 Entanglement Entropy of Target Function for Image classification

In quantum physics, the entanglement entropy describes the degree of quantum states entanglement.
Given a quantum system divided into two parts A and B, the entanglement entropy .S 4 is defined by
the reduced density matrix p4 for part A: Sy = —Tr4(pa log pa). Similarly, in an image including
an object of interest, it can be divided into two parts A and B too like Fig 1, which gives us a chance
to model the relationship of target function complexity and object-to-image ratio for tiny object
classification problem. Due to Hgo = Hz and target functions set 7, entanglement entropy can
be a useful tool to characterize the image classification problem. After we discuss the bound of
entanglement entropy, we can have some information about how to construct the model with respect
to the object-to-image (O2I) ratio. O2I ratio is defined as the ratio of the object correlates to the label
in the whole image, similar to signal-to-noise ratio.

Quantum system usually satisfies different scaling of the entanglement, such as area law and volume
law. Volume law entanglement is not discussed in this paper, because it is far beyond the problem
we want to solve. One can have an example of volume law entangled target function that is the
images to be classified are randomly generated in dataset. Area law entangled target function means
the pixels only entangled locally, for instance, closed loop recognition task. For general image



Figure 1: Representation of a general image. Region B is the background. Region A is an object of
interest. Region R is the boundary between B and A.

classification problem, the target function satisfies a sub-volume law. In [[7] , the author argues
that the entanglement entropy of target function for image classification problem is bounded by
Sap < rLyplog?2, where r is the maximum distance within which pixels entanglement exists and
L 4 is the length of boundary between region A and B . One can easily incorporate the O21 ratio
in this bound. We denote the O2I ratio as 1. For example, most shapes of focused object in the
image are close to circle or polygon. Then the entanglement entropy has bound Sxp ~ O(r,/7). For
objects closed to a line, the bound of entanglement entropy scales as Sap ~ O(rn). In our problem
scenario, we only discuss the first type of object in image. The abstract model of images in object
classification problem is shown in Fig 1.

To match the level of the sub-volume law entanglement entropy for target function in image classifi-
cation problem, we suggest using Multi-scale entanglement renormalization ansatz(MERA), which
supports multiple entanglement scales at most O(Sap) ~ Lap [10].

3 Multi-scale Entanglement Renormalization Ansatz for Image
Classification

In this section, we describe how we define the 2D MERA model and how we achieve optimization. A
traditional MERA is a tensor network that corresponds to quantum circuit and the model is finally
contracted to 1. Therefore, we make some modifications to the original model and

The MERA model is basically a cascade of isometries and disentanglers. We follow [9]’s work to
construct our 2D MERA for machine learning. We define the isometries and disentanglers as follow:

(i) tensors in odd rows are disentanglers:
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(ii) tensors in even rows are isometries:
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(iii) Also, we assign output indices for the top tensor:
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which is in the same number of classes for image classification.[9] And for the input, we let each
pixel of the input image as the bottom tensors. We divide the whole image into 4x4 regions and
pixels in the same region are connected to the same disentangler, which is shown in Fig 2. In this
modified version of MERA, we then can train this model on our tiny object classification problem.



Figure 2: MERA in 1D (left) and 2D (right). Inspired by [8] and redrawn it.

The optimization method we applied is the same as [11]]. Here, we use automatic differentiation built
in TensorFlow to minimize a cross entropy loss function of labels and output from 2D MERA. More
precisely, our loss function is

I = Z y; log softmax (6 (z;)). ®)
(zi,9:)€ED
And the prediction is
f(z) = argmax softmax(5(c) (x:)) ©)

C

Under this configuration, we can easily train the 2D MERA model using TensorNetwork with
TensorFlow backend. Similar to training a neural network, in training step, the input of the algorithm
is a pair of image and label. The input image is divided into N regions. Each region is flattened
into a one dimensional tensor at the bottom of the MERA. Then, the bottom tensors are contracted
with disentanglers and isometries alternatively, until the contraction reaches the top tensor. The loss
function takes the top tensor and the label of the image. Gradient descent is used to minimize the
loss function and updates all parameters in disentanglers and isometries by back-propagation. In
inference step, the predication of classification is the argument of the maxima for the top tensor.

Though the brute-force gradient method has some flaws [[11]], we show that it still can successfully
optimize the model to a reasonable performance.

4 Performance Evaluation

We demonstrate that the tensor networks can be a promising tool to tackle the tiny object classification
problem where CNN may fail. We evaluate the performance of the MERA algorithm on MNIST,
NeedleMNIST and LIDC datasets, and compare with conventional neural networks.

4.1 Data Sets

Our experiments are performed on three public datasets, where we explore hyper-parameter tunning
on MNIST dataset and NeedleMNIST and LIDC datasets are associated with our focused task of tiny
object classification.

MNIST: MNIST dataset is widely used for judging the performance of heuristic machine learning
model, including a large collection of handwritten digits. Images in the dataset have 28228 pxiels
in grey level and correspond to a class label from 0 to 9 [12]]. In our experiments, MNIST dataset
serves as a playground for understanding hyper-parameter tuning and demonstrates the powerfulness
of tensor network techniques.

NeedleMNIST: NeedleMNIST dataset is introduced in [2[], which is inspired by the cluttered MNIST
dataset[13]. In NeedleMNISt dataset, each image is controlled at a specific object-to-image ratio by
randomly pasting a MNIST digit patch on the black background. Also, some digit patches unrelated
to the classification label are also added as input noise. The dataset includes images with O2I ratio
range from 19.1% to 0.075% with corresponding size from64 x 64 to 1024 x 1024 . Here, we choose
digit 3 as the object of interest to match the experimental setting in [2]]. Due to the computational
limit, we only run our experiments on dataset with size 64 x 64 and 128 x 128. The NeedleMNIST



Table 1: Experimental results on MNIST, NeedleMNIST and LIDC datasets.

MNIST NeedleMNIST (64 x 64) NeedleMNIST (128 x 128) LIDC

CNN 98.3% 76.0% 73.9% 78.0%
Tensor-NN  98.5% 74.0% 72.7% 86.0%
2D MERA  90.3% 78.4% 71.4% 76.0%

dataset is a great testbed for evaluating the performance of tensor network models in tiny object
classification problems.

LIDC: The Lung Image Database Consortium image collection (LIDC) is a dataset including clinical
thoracic CT scans with annotated lesion area. And there are 1018 CT images and associated XML file
for lesion masks. In our experiment, we take advantage of this dataset for classification task, similar
to [[15]]. If one CT image has an associated lesion mask, we label it as positive sample, and vice versa.
The lesion area has an average O2I ratio 1.32% [17]], which is a very typical tiny oject problem.

4.2 Experimental Setting and Results

In our experiments, we compare the performance of three machine learning models. And also, we
explore how the hyper-parameters influence the performance of 2D MERA.

In our experiments on MNIST dataset, we aim to explores the critical hyper-parameters to ensure the
convergence of the model. During our experiments, we find that the learning rate of back-propagation
optimizer and the standard deviation of initial model parameters are essentially important to model
convergence. In Fig 6 and Fig 7, we plot the loss and accuracy during training with different learning
rates and standard deviations. In the end, we decide the best parameter combination is {Ir: le-5, std:
0.0001}.

After we tuned the model on MNIST dataset, we then train our model on NeedleMNIST dataset with
size 64x64 and LIDC dataset with size 128x128. In these experiments, the 2D MERA model inherits
the same hyper-parameters from MNIST experiments. Each input tensor(bottom tensor) represents
one pixel in the image and has only one dimension.

To compare our 2D MERA model with neural network baseline, we use a Alex-Net [[14] like neural
network for MNIST experiment and for NeedleMNIST and LIDC, DenseNet[16] are used in these
experiments as comparison, similar to [15].

Also, we include the performance of neural network model that has a tensor network layer in the
experimental results. The tensor network module here is locally orderless fusing with globally
orderless inputs [[15], which yields better results when it replaces a convolutional layer. The aim of
this experiments is to show the tensor network not only has potential to beat neural network but also
can boost the performance of current state-of-the-art.
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Figure 3: Evolution of training comparison.



0 mparsion in trainin . -
LOSS comparsk aining Accuracy comparsion in training

0.70 0851 Neural Network
0.80 Neural Network with Tensor Module
065 —— MERA model
075 A
060
2 & 070
o [
[
= 055 = 065
¥
050 <L 060
0.45 { —— Neural Network 055
Neural Network with Tensor Module 50
0.40 { — MERA model o
Db 2’5 5‘0 7‘5 lellI 1] 12l 5 15 0 1]" 5 045 y T T g N ’ T N
00 25 50 715 10.0 125 15.0 175
Epochs Epochs

Figure 4: Loss and accuracy of MERA during training on NeedleMNIST dataset with size 64 x 64.
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Figure 5: Loss and accuracy of MERA during training on NeedleMNIST dataset with size 128 x 128.

The performance of three models for MNIST, NeedleMNIST and LIDC datasets are reported above. We show
that 2D MERA yields comparable performance to the neural network. And the neural network with tensor
network layer model exceeds the traditional neural network in MNIST and LIDC datasets. These results imply
that the tensor network are potentially useful to boost the neural network or even take its crown in deep learning
field.

We also plotted training loss and accuracy curves for MNIST dataset. The goal is to show that the learning
rate of optimizer and standard deviation of initial parameters play important role to yield a converged MERA
model. Current gradient descent method to optimize MERA model may be not very ideal for efficient training.
Efficiently using tensor network model is still an open question.

5 Conclusion

In this paper, we have summarized the theory in previous work to explain why tensor networks is a promising
solution to tiny object classification problem. Second, we propose a 2D MERA model optimized by gradient.
Third, we compare tensor network models with neural network on MNIST and tiny object dataset including
NeedleMNIST and LIDC. We also explore the influence of hyper-parameters for tensor network model. Based
on the comparison, we show the tensor network is a promising tool to tackle tiny object classification problem.
Future work will be interesting to explore more optimization techniques for tensor network[8]], tricks to improve
performance[[13] and accelerating training and inference time[[18].
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