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Abstract

Learning underlying patterns in unlabeled data with generative models is a chal-
lenging task. Inspired by the probabilistic nature of quantum physics, recently, a
new generative model known as Born Machine has emerged that represents a joint
probability distribution of a given data based on Born probabilities of quantum
state. Leveraging on the expressibilty and training power of the tensor networks
(TN), we study the capability of Born Machine in learning the patterns in the two-
dimensional classical Ising configurations that are obtained from Markov Chain
Monte Carlo simulations. The structure of our model is based on Projected Entan-
gled Pair State (PEPS) as a two dimensional tensor network. Our results indicate
that the Born Machine based on PEPS is capable of learning both magnetization
and energy quantities through the phase transitions from disordered into ordered
phase in 2D classical Ising model. We also compare learnability of PEPS with
another popular tensor network structure Matrix Product State (MPS) and indicate
that PEPS model on the 2D Ising configurations significantly outperforms the MPS
model. Furthermore, we discuss that PEPS results slightly deviate from the Monte
Carlo simulations in the vicinity of the critical point which is due to the emergence
of long-range ordering.

1 Introduction

In the past years generative models have shown a remarkable progress in learning the probability
distribution of the input data and generating new samples accordingly. The generative models can
leverage labels in the data or they can be trained in an unsupervised fashion. Generative adversarial
networks (GANs) [1] are the most well studied models that use the information of labels in the
data, whereas Variational Auto Encoders (VAEs) [2], for instance, do not necessarily need the labels.
Another kind of generative models is the family of Restricted Boltzmann machines (RBMs) [3] that
are energy based. These physics-inspired generative models use a joint probability distribution ansatz
based on the Boltzmann energy distribution defined as

p(θ) =
e−E(θ)

N
,
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where N =
∑
θ e
−E(θ) is the partition function (or the normalization factor of the probability

density), and E is the energy associated to the given input.

The success of the above generative models have been vastly examined on large datasets in both
image domain and text domain. However, learning and generating physical properties in natural or
engineered systems can be completely different from non-physical datasets as the physical configu-
rations should obey key rules and certain inherent properties should be preserved in the generated
data, such as conservation laws, invariances , or symmetries in the underlying Hamiltonians. In fact,
it has been observed that machine learning generated configurations do not completely match with
those obtained with physical simulations [4, 5, 6, 7, 8]. In the case of RBMs, even though RBMs
follow a simple, yet powerful ansatz for learning the input data distribution, but the partition function
N in RBMs is intractable and should be calculated through Markov Chain Monte Carlo (MCMC)
sampling. It has been shown that this sampling process becomes costly so that it affects the quality
of learning of physical properties [8]. Also, it has been reported that RBMs do not fully learn the
long range dependencies between the elements in the data [5, ?]. Here, we are seeking a generative
model that can be trained over the two dimensional Ising configurations and could efficiently learn
both local and non-local physical observables through a phase transition.

Inspired by probabilistic interpretation of quantum mechanics, recently a new paradigm of generative
model known as Born Machine has been proposed that can be trained over unlabeled datasets
[9, 10, 11].

Born machines use the probabilistic nature of quantum mechanics to describe underlying probability
distribution in a given dataset. According to quantum mechanics, the probability distribution of
possible outcomes (measurements of quantum states) in a system is proportional to ψ2, where ψ is
the wave function associated to the system. Mathematically, the likelihood function p can be written
as:

p(ν) =
|ψ(ν)|2

Z
. (1)

where ν = {ν1, ν2, ..., νN} is the input data and Z =
∑

ν |ψ(ν)|2 implies the normalization of the
probability distribution [10].

Calculation of ψ depends on the Born machine architectures. Similar to previous works [9, 10, 11],
we also apply Tensor networks to represent the structure of Born Machines.

Originally, Tensor networks are one class of quantum models that have shown a great potent in
efficient representation of a wide class of quantum many body states. The compact representation of
the quantum many body states can be achieved by decomposing the corresponding tensor network
with an exponential number of degrees of freedom into a low-rank tensor. One of the most studied
examples are matrix product state (MPS) that have efficient representation for one-dimensional
gapped local Hamiltonian. With their intrinsic properties, MPS has been used in machine learning
tasks such as pattern discrimination[12] and classification[13].

A natural extension of MPS into two dimension is projected pair entangled state known as PEPS. The
terms arise from the fact that PEPS can be considered as maximally entangled paired state of some
auxiliary systems which is locally projected into another subspace [14]. While PEPS are known to
efficiently represent the ground state of two-dimensional system with area-law entanglement, however,
unlike MPS, the exact classical contraction algorithms of finite size PEPS grows exponentially with
the systems size; however, efficient approximate tensor network contraction schemes have been
recently developed [15, 16, 17]. Inspired with this correspondence, and leveraging on the fact that
the tensor network have tractable likelihood, in this paper, we interrogate the learning and generating
power of the Born Machine based on projected entangled pair states (PEPS model).

In this work, we study the performance of PEPS model in learning the phase transition in the classical
Ising configurations that are obtained by the Monte Carlo (MCMC) simulation. Similar to previous
works [5, 6, 18], we first train our model on a set of configurations at various temperatures and
produce new configurations. Next, we compare the magnetization and energy profiles on both MCMC
and PEPS configurations. Also, we compare these results with those that we obtain from learning
MPS and TTN over the same Ising configurations. We show that our PEPS model has an overall
better performance in generating configurations with correct magnetization and energy values through
the wide range of temperatures taken both at ordered and disordered phase of the Ising model.
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The rest of the paper is organized as follows. In Section 2, we introduce the Born Machine over
MPS and PEPS and we explain the training and sampling processes. In section 3, we briefly describe
the Monte Carlo simulation of the Ising model as well as its physical properties. Next, we present
physical measurements on the generated Born Machine based on MPS and PEPS configurations and
compare them with their Monte Carlo versions. Finally, in Section 4 we discuss the advantages of
PEPS model as well as possible new direction for enhanced learning close to critical point.

2 TN Born Machines

Here, we introduce a family of Born Machines based on two known tensor network architectures
in one and two dimension, namely the MPS and PEPS. The first family is MPS which is defined as
one dimensional array of tensors indicated by Ti that are contracted to each other via virtual bonds
as shown in figure 1. Each tensors, also has dangling bonds known as physical legs vi. The natural
extension of MPS into two dimensions are PEPS which are defined as a two dimensional grid of
tensors that are contracted to each other in a specific form as depicted in Figure 1. In our model, the
explicit form of ψ is defined as:

ψPEPS =

b∑
αi

Tα1,αL

1,ν1
T
α1,α2,αL+1

2,ν2
...,T

αN−L,αN−1

N,νN
, (2)

where tensors Tis are connected with αs to their neighboring tensors with a fixed bond dimension
b. Moreover, tensor Ti (i ∈ {1, 2, ..., N}) has a physical leg (vi) that is designed to be connected to
the ith element of the input configuration. In many physical systems, including our Ising model, the
input configurations have a binary values and hence it requires the dimension of physical legs to be
set as 2. For simplicity, in our model, we consider a fixed bond dimension value b for all connections
between the tensors.

Training the Born Machines: Given the Equation (1), the variables in those tensors are optimized
by minimizing the negative log-likelihood (NLL) [10] described by

L = − 1

T
∑
ν∈T

ln p(ν). (3)

In the above equation, T is the number of input configurations. It’s known that minimizing the
objective function L is equivalent to minimizing the Kullback-Leibler (KL) divergence [19] that
provides a measure of similarity between the empirical and the parameterized probability distributions.
Therefore, the gradient of the NLL is given by

−∇νL = − 1

T
∑
ν∈T
∇ν ln p(ν) +∇ν lnZ, (4)

and is calculated to find the best values of the model variables. In the above formula, although the
calculation of the first term can be simply carried out, evaluating the second term requires a summation
over all possible configurations which is not normally easy. With tensor networks, however, this can
be done tractably. To calculate the normalization function Z, in our case, another copy of PEPS is
made and its physical legs are contracted through the physical legs of the original PEPS. Intuitively,
this process is equivalent to measuring the expectation value of the Identity matrix where all possible
values of inputs are considered.

In addition, the exact computation of the tensor network leads to an efficient sampling which allows
the generation of new data according to the learned joint probability distributing. Unlike other
energy-based models such as RBM, where the normalizing factor is intractable and requires one to
perform the MCMC from an initial configuration which makes it very expensive for computations
[5, 6, 18]. Below, we describe the sampling process for PEPS.

Direct sampling from TN architectures: One of the advantage of Born machines over RBMs is
the efficiency in generating new configurations. While in RBMs producing new samples is done
through Monte Carlo Markov Chain (MCMC) (that significantly increase the model run time), in
Born machines the samples are directly calculated via p(v) [10, 11]. Here, we explain the samling for
PPES, while similar procedure can be done for MPS and TTN [20]. Given the trained ψ, normalizing
ψ with Z, i.e, ψ → ψN = ψ/Z, makes the necessary computations in the sampling faster.
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Figure 1: Graphical representation of MPS in left and PEPS in the right panel. The small black boxes
represent the tensors T s which are connected via virtual bonds. Each tensor has dangling bonds νi
indicating the physical degrees of freedoms.

Now consider that a new configuration s = {s1, s2, ..., sN} is sampled from p(v). Here, we explain
the details of this process. From the first spin s1 and according to the Equation (1), one samples s1

with probability:
p(s1 = 1) =

∑
s2,s3,...,sN

ψ̄N1,s2,...,sNψ
N
1,s2,...,sN (5a)

or,
p(s1 = −1) =

∑
s2,s3,...,sN

ψ̄N−1,s2,...,sNψ
N
−1,s2,...,sN (5b)

which means that ψ and ψ̄ are multiplied to each other for all possible values of si with i =
{2, 3, .., N}. Given Equations (5), the sampling of s1 is drawn based on the values of p(s1 = ±1).
Once the value of s1 is determined, the second spin is sampled but conditioned on the value of
s1. Therefore, p(s2|s1) follows the same computation in Equations (5a) and (5b), except s2 is not
summed over and s1 is fixed to the drawn value. Therefore given p(s2|s1), one can obtain the value
of s2 by comparing p(s2|s1) with a random number between 0 and 1. The processes of computing
p(s1) and p(s2|s1) are further illustrated in Figure 2 which shows that summations in Equations (5)
are simply equivalent with contraction over corresponding physical legs in PEPS. Direct sampling
process from p(s2|s1) can be straightforwardly extended to the next sk for k = 3, ..., N . To sample
spin sk, one has to obtain the values of previous spins, (sk−1, sk−2, ..., s2, s1) and then calculate
p(sk|sk−1, sk−2, ..., s1).

It is noteworthy that in this sampling method, the exact contraction is carried out which means all
bonds between the tensors have non-zero value. Later in Section 4, we briefly discuss possibles
approximations in the contraction of tensors which make the sampling more efficient.

3 Learning 2D Ising Phase Transition

PEPS model performance is studied on the classical Ising model configurations and also compared
with the performance of MPS model that was introduced in [10]. The size of PEPS model is set to 4x4
in all simulations and the bond dimension (b) of all connections is fixed to 2. Note that with higher
bond dimension values more parameters are used for training, but the drawback is the increase of
calculation complexity. For instance, middle tensors in Figure 2 are connected to their 4 surrounding
tensors and hence the complexity of contractions will be in the order of (b4) and so smaller values
of b will lead to lower complexity in the learning algorithm. All tensors in PEPS are initialized by
random values that are sampled from Gaussian distribution N(0, 1). Also, the Adam optimization
[21] with a decaying learning rate is employed.

The classical Ising model configurations will be the training dataset for the PEPS models and it is
defined as follows: on a two dimensional square lattice of length L, consider N = L2 classical spins
si (i ∈ {0, N}) that can take on binary values of -1 or +1. Given the Hamiltonian of the system by

H = −J/kB
N∑
〈i,j〉

si sj (6)
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(a)
(b)

(c) (d)

Figure 2: (a) The structure of PEPS model with 4x4 tensors and dangling physical legs shown in blue.
(b) Calculation of the scalar Z. One copy of ψ (ψ̄) is created and contracted to the original ψ through
their physical legs. The red lines indicate the contraction of the physical legs (c) All physical legs of
ψN (normalized ψ) will be contracted with ψ̄N through all physical legs except ν1. The resulting
rank-2 tensor will be used to calculated p(s1 = ±1). (d) Calculation of p(s2|s1). This time the value
of s1 is already drawn in the previous step.

where 〈〉 indicates that the summation only runs over nearest neighbor spins and kB is the Boltzmann
constant. Also, for simplicity the coefficient J is chosen such that J/kB = 1. To reach the equilibrium
state of the system, we apply the importance sampling Monte Carlo (MC) method. Therefore, from a
random initial configuration, at each time step and for a randomly chosen spin si, the Metropolis-
Hasting flip probability Pi = min{1, e−∆Hi/T } is calculated to determine whether si is accepted to
be flipped or not. In this formula, T is the temperature and ∆Hi is the change of energy associated
with the change of si to its opposite value. We run this simulation for different temperatures and
when the system reaches its equilibrium, we evaluate the magnetization density which is defined as

M =
1

L2
|
N∑
i

si|, (7)

and the energy density , which is given by

E =
1

2L2

N∑
〈i,j〉

sisj . (8)

In the thermodynamic limit, the two-dimensional classical Ising model shows a second order phase
transition from a disordered phase to an ordered phase at Tc ≈ 2.269. Since our Ising model is
simulated on a small lattice, the system will experience a finite size effect. This means that the
Tc ≈ 2.269 will be slightly different from the point that the phase transition temperature occurs [22].
In the ordered phase, spins tend to align with their neighbors, consequently, all spins are in one of the
binary directions. In the disordered phase, in infinitely large systems, spins do not have any preferred
state to choose and they follow a random distribution. However, in our case, due to the finite size
effect the direction of spins is not fully random. Hence, the energy and magnetization values will
be different from when the spins are distributed randomly. This indicates even in the disorder phase
there is still a weak ordering pattern can be observed.

Figure 3 illustrates the value of magnetization and energy densities as functions of temperature in
MC, MPS, and PEPS configurations. For the MPS, we tried different values of bond dimensions such
as b= 2,4,8,16. Since our simulation results with the MPS do not significantly change with value of b,
we only show our results for b = 8. The green graph in both energy and magnetization plots is for
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(a) (b)

Figure 3: Comparison of Magnetization and Energy profiles in MC, MPS, and PEPS configurations.
Figure (a) shows a consistency in the magnetization values of the MC and PEPS configurations within
the range of temperatures far from the critical points, whereas MPS results are not satisfying except
for the low temperatures. In Figure (b) the energy density in PEPS is much closer to that of MC if
compared to MPS. However, both MPS and PEPS fail to produce configurations with correct energy
values around the critical point.

MPS results and as it can be clearly seen, at various temperatures specially those higher or closer
to Tc, the MPS graph does not match with that of MC, we also repeat similar calculation over TTN
architecture with various bpon dimensions and were not able to detect any improvements (the results
are not shown here). Interestingly, PEPS produces configurations with correct magnetization and
energy at most of the temperatures which is clearly better than MPS and TTN. At the ordered and
disordered phase, while both magnetization and energy learned by PEPS has a good agreement with
those in MC, however, the values manifest small deviation at and near the critical point (Tc ≈ 2.269).
This observation can be explained in the following way: in the vicinity of the critical temperature,
a finite long range correlation between spins takes place. Note that this range of this correlation
increases as the system size become larger. Consequently, it becomes hard for the PEPS model with
inherent local structure to capture the long range order and hence the generated configurations will
not be physically reliable at critical point. This motivates the extension of Born machine over tensor
network architecture known as multi-scale entanglement renormalization ansatz (MERA) which is
variational ansatz for ground states of lattice system close to critical point [23].

4 Discussion

A recent generative model known as Born Machine based on family of tensor network ansatz shown
a great success in learning various classical and quantum data [10, 11, 24]. In this paper, we design a
Born Machine model based on the PEPS architecture and showed the learning power of our model
in learning the phase transition of classical Ising model. Our results indicate that the PEPS model
successfully learns local and non-local physical information (Magnetization and Energy) in the Ising
configurations and generate new configurations with similar physical quality as input configurations.
Our results indicated that while the two dimension structure of PEPS leads to a better performance
in learning the spin configurations compare to one dimensional tensor network such as MPS and
TTN (results not shown here), however, close to critical point it fails to learn the configurations
accurately due to increase in the long range correlation in the vicinity of the phase transition. This
further motivates the adaption of the Born Machine over another family of tensor network structure
known as MERA which are shown to capture the long-range ordering [23]. This is an open research
question that we leave for future investigations.

Finally, although PEPS models are excellent tools in learning the information in two dimensional
systems, but soon with increasing the bond dimension they become very expensive to evaluate.
Higher bond dimensions make the calculation extremely hard and as a result, PEPS models may
not be easily extended to larger systems with larger bond dimension values and one requires to
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adapt new techniques for efficient tensor network contractions. There are several techniques for
approximate tensor contractions over PEPS that have been applied for sampling or calculation
of partition functions for 2D quantum many-body Hamiltonians, quasi-2D spin-glasses, or low-
dimensional discrete optimization problems, including MPS snake-like contractions [25], layer-wise
MPS-MPO contractions [16], and corner transfer matrix for tensor contractions [15]. More recently,
there are general approaches for approximate tensor network contractions over arbitrary graphs that
can be applied to probabilistic graphical models or spin-glass systems [17].
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