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Introduction

The multi-modal and irregular nature of modern big data is posing stern challenges to
traditional learning systems, owing to the sheer volume, variety, veracity and velocity
of modern data sources [1]. To this end, it is necessary to generalize deep learning
approaches to handle such irregular and multi-modal data.

Some of the most successful approaches for data analytics on irregular domains resort
to graph signal processing techniques, because of their ability to provide insights into
the underlying data geometry [2]. When it comes to exceedingly large multi-modal
data, tensor-based methods have demonstrated their potential in effectively bypassing
the bottlenecks imposed by the curse of dimensionality in various learning tasks [1].

To provide a general framework that fully exploits the advantages of both graphs and
tensors in a deep learning setting, we here generalize the RGTN concept in [3] to in-
troduce the novel Multi-Graph Tensor Network (MGTN). In this way, the proposed
MGTN is capable of handling irregular data residing on multiple graph domains, while
simultaneously leveraging the compression properties of tensor networks to enhance
modelling power and reduce parameter complexity.

Fast Multi-Graph Tensor Network Model

Consider a multi-graph learning problem where the input is an order-(M + 1) ten-
sor X ∈ RJ0×I1×I2×···×IM with J0 features indexed along M physical modes
{I1, I2, . . . , IM}, such that a graph G(m) is associated with each of the Im modes,
m = 1, . . . ,M . For this problem, we define:

1. A = {A(1),A(2), . . . ,A(M)}, a set of adjacency matrices A(m) ∈ RIm×Im con-

structed from the corresponding graphs G(m).

2. W = {W(1),W(2), . . . ,W(M)}, a set of weight matrices W(m) ∈ RJm×Jm−1

used for feature transforms, where Jm, for m = 1, . . . ,M controls the number
of feature maps at every m.

3. P = {P(1),P(2), . . . ,P(M)}, a set of propagation matrices P(m) ∈ RJm×Jm,

modelling the propagation of information over the neighbours of the graph G(m).

Using the above objects and an optional activation function, σ(·), we can now de-
fine the general Multi-Graph Tensor Network (gMGTN) layer characterized by the
following forward pass:
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where F (m) = ten(I + (A(m) ⊗ P(m))). The so defined forward pass generates a
feature map, Y ∈ RJM×I1×···×IM , from the input tensor, X , through a series of
multi-linear graph filter and weight matrix contractions, which essentially iterates the
graph filtering operation across all M graph domains.

We can reduce the parameter complexity of gMGTN by: (i) approximating P(m) ≈ I

for m = 1, . . . ,M ; and (ii) using one single weight matrix, W(x) ∈ RJ1×J0, for all
of the graph domains, where J1 controls the number of hidden units (feature maps).

This allows us to simplify the graph filter to F(m) = (I + A(m)), which leads to the
fast Multi-Graph Tensor Network (fMGTN) forward pass:
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Model Architecture

Fig. 1: Data processing diagram of the proposed fMGTN model

Figure 1 illustrates the workings of the proposed fMGTN framework, where the input data tensor,
X , is forward-passed from left-to-right to generate the final output vector, o. The given model
takes as input a tensor valued sample, where J0 different signals are indexed along M different
physical modes, where each physical mode is associated with a physical graph domain with Im
nodes. The given input tensor is passed through the multi-graph filter layer (represented in tensor
network notation), which generates a filtered representation of the signals while maintaining
the underlying multi-graph and multi-dimensional structure. This multi-linear graph filtering
constitutes a highly localized filtering operation, where locality is defined with respect to the
topology of the graph. The filtered multi-graph tensor data is then passed through a dense layer
in TTD format (represented in tensor network notation), which combines the localized features
maps extracted previously via a global multi-linear map. The resulting global features are then
vectorized and passed through a final dense neural network layer to generate the desired output.

Fig. 2: Tensor network diagram of the proposed fMGTN model

Figure 2 illustrates the proposed model architecture used in our algorithmic trading experiment as
a tensor network. The section encircled in dotted line denotes the multi-graph filtering operation
for M = 2 as per equation (2). The yellow region denotes a tensorized dense layer weight matrix,
represented in the Tensor-Train format, which is inherently compatible with the given problem
structure. The input data used for our experiment is an order-3 tensor with J0 = 4 pricing
features, I1 = 30 past time-steps, and I2 = 9 currencies, as it will be discussed in the experiment
section. Note that we define a time-domain graph filter and a currency-domain graph filter for
input data modes of dimensions I1 and I2, respectively.

Algorithmic Trading Experiment

The proposed fMGTN is implemented and compared against three competing models
in the context of algorithmic trading: a notoriously difficult paradigm characterized
by high-dimensional, multi-modal, noisy, and irregular data. Specifically, the pro-
posed models are implemented in the double deep-Q learning setting as action-value
approximation networks.

Fig. 3: Input data tensor (left) and the corresponding graph domains (right)

Figure 3 illustrates the data tensor structure for the algorithmic trading experiment,
where J0 features are indexed along both the time-domain and the currency (carry)
domain. The time-domain graph is a directed graph where past states can influence
future ones but not vice-versa, while the carry graph is a directed graph where the
connection between currencies are proportional to the pairwise carry factor. In both
graphs, thicker edges indicate stronger connection.

The proposed fMGTN based network is shown to out-perform all other models in
consideration across a number of commonly used financial metrics, while using only
a fraction of trainable parameters, as shown in the figures below.

Fig. 4: Backtest trading performance

Fig. 5: Performance Metrics
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