
Tensor Decomposition via Core Tensor Networks

Jianfu Zhang1, Zerui Tao2, Qibin Zhao3, and Liqing Zhang1

1Shanghai Jiao Tong University
2Tokyo University of Agriculture and Technology

3RIKEN AIP, Tensor Learning Team
c.sis@sjtu.edu.cn, zerui.tao@foxmail.com, qibin.zhao@riken.jp, zhang-lq@cs.sjtu.edu.cn

Abstract

Tensor decomposition (TD) has shown promising performance in image completion
and denoising. Existing methods always aim to decompose one tensor into
latent factors or core tensors by optimizing a particular cost function based on a
specific tensor model. These algorithms iteratively learn the optima from random
initialization given any individual tensor, resulting in slow convergence and low
efficiency. In this paper, we propose an efficient TD algorithm that aims to learn
a global mapping from input tensors to latent core tensors, under the assumption
that the mappings of multiple tensors might be shared or highly correlated. To this
end, we train a deep neural network (DNN) to model the global mapping and then
apply it to decompose a newly given tensor with high efficiency. Furthermore, the
initial values of DNN are learned based on meta-learning methods. By leveraging
the pretrained core tensor DNN, our proposed method enables us to perform
TD efficiently and accurately. Experimental results demonstrate the significant
improvements of our method over other TD methods in terms of speed and
accuracy.

1 Introduction

Tensors are extensions of vectors or matrices to high-order cases. Tensor decomposition (TD), which
aims to represent high-order tensors by multi-linear operations over low-order tensors, have shown
compelling performance in a variety of artificial intelligence application tasks such as image and
video completion Oseledets [2011]; Zhao et al. [2016], multi-modal signal processing Jia and Gong
[2005]; Zadeh et al. [2017] and model compressionYu et al. [2017]. In particular, besides directly
decomposing of high-order data, we can also tensorize data of lower-order into a high-order tensor
which is called tensorization operation, and then apply TD based on an appropriate assumption, such
as low-rankness, smoothness, or sparsity, to handle different tasks.

In this paper, we focus on TD for image completion and denoising. Particularly, our objective is
to find a low-rank approximation of the observed signal. Following the popular TD models such
as Harshman and others [1970]; Carroll and Chang [1970]; Tucker [1966]; Oseledets [2011]; Zhao
et al. [2016], these methods search for the best low-rank decomposition by optimizing algorithms
like gradient descent or alternating least square. Since the optimization problem is non-convex, ill
initialization may lead to a spurious local minimum and slow convergence. Moreover, traditional
methods always treat every image individually without considering any correlations. Individually
decomposing the tensors means more time-consuming when the number of input tensors is large.
Consequently, when the dataset contains a large amount of data, existing methods cannot give out
results fast and accurately. These drawbacks make TD cumbersome for more flexible applications
that have a high demand for time efficiency. Also, different input tensors may share some common
structures. Learning TD individually will ignore these correlations.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

To address the problems abovementioned, we proposed a TD method based on Deep Neural
Networks (DNN) called Core Tensor Networks (CTN). Given a large dataset consists of many
tensors (e.g., images), we use the networks to learn the main core tensors for all the tensors and
leverage bias core tensors to adjust each core tensor. This is the first paper to learn TD with deep
neural networks to the best of our knowledge. There are existing works which are related to both TD
and DNN. Methods like Lebedev et al. [2015]; Wang et al. [2018] utilize TD methods to reduce the
number of parameters in DNN. CoSTCo Liu et al. [2019] leverages DNN to preserve the high-rank
information as supplementary for sparse TD. In Maruhashi et al. [2018]; Wu et al. [2019], methods
proposed utilizing decomposed core tensor as fixed input for DNN to learn multi-way relations. Our
proposed method is distinguished from these approaches in that we directly generate the decomposed
core tensors for TD in an end-to-end manner instead of using TD methods as a submodule in DNN.
Specifically, we vectorize the input tensor and learn the core tensors with a few fully-connected
layers. With the help of CTN, we can intuitively learn the structure information shared by all the input
tensors. Leveraging the scalability of DNN and computing ability of GPU, our proposed method
can decompose the tensors fast and accurately. We also train CTN with a small amount of auxiliary
tensor data and transfer to the test tensors. We designed a framework based on meta-learning Finn
et al. [2017]; Nichol et al. [2018] to learn the main core tensors, which can adaptively fit different
bias core tensors. As far as we know, it is also the first time to combine meta-learning with TD. With
the help of meta-learning, CTN can decompose test tensor significantly faster and still compatible
accuracy. We evaluate our proposed model on unsupervised image completion and denoising tasks.
Experimental results show that our model achieves competitive performance at a significantly fast
speed.

2 Related Works

Tensor decompositions are widely used in completion and denoising tasks. Traditional tensor
completion/denoising models assume that the true signal lies in some low-rank space, which can be
approximated by low-rank tensor decompositions. A wide variety of tensor decomposition models
have been established, e.g., CP Harshman and others [1970], Tucker Tucker [1966], Tensor-Train
(TT) Oseledets [2011] and Tensor-Ring (TR) Zhao et al. [2016], among many others. To pursue
low-rank approximation of observed data, one way is to use convex surrogation of tensor rank, i.e.,
overlapped nuclear norm Liu et al. [2012], TT nuclear norm Bengua et al. [2017], TR nuclear norm Yu
et al. [2019], tubal nuclear norm Semerci et al. [2014]. However, nuclear norm based methods suffer
from heavy computation and can hardly be applied to large-scale datasets. Another track is to search
low-rank factorizations of the data. Basically, there are two strategies for tensor decompositions.
One is to use Alternating Least Square (ALS) based algorithms, namely, to alternatively solve least
square problems for different factors. For example, Wang et al. [2017] proposed TR-ALS for tensor
completion. Yuan et al. [2019a] designed rTRD for large tensors, using sketching technique. Another
is to use gradient-based algorithms, which is more scalable to large scale datasets. The idea is to
compute the gradient for weighted objective functions, then apply gradient descent (GD) or stochastic
gradient descent (SGD), e.g., CP-WOPT Acar et al. [2011], Tucker-WOPT Filipović and Jukić
[2015], TT-WOPT Yuan et al. [2017]. Besides, Yuan et al. [2019b] used nuclear norm regularization
in TR, in order to get low-rank factors.

It should be noted that our proposed algorithm differs from all the above traditional approaches
in that we train core tensor networks (CTN) based on different images, while traditional tensor
decomposition methods only use the information of one single image. It is reasonable to assume that
there exists some typical structure among different images, and using the learned cores as initialization
should be helpful for further learning on different test images. To the best of our knowledge, it is the
first attempt to combine meta-learning with tensor decomposition. Moreover, our proposed model
can be easily applied to enormous images, with the help of stochastic optimization algorithms like
gradient descent.

There are existing works which are related to both tensor decomposition and NN. Methods
like Lebedev et al. [2015]; Wang et al. [2018] utilize tensor decomposition methods to reduce
the number of parameters in NN. CoSTCo Liu et al. [2019] leverages NN to preserve the high-rank
information as supplementary for sparse tensor decomposition. In Maruhashi et al. [2018], Maruhashi
et al. proposed a method utilizing decomposed core tensor as fixed input for NN to learn multi-way
relations. In Wu et al. [2019], Wu et al. proposed an approach to learn temporal relationship with a

2

recurrent neural network, then learn the non-linearities between different modes with multi-linear
perceptron. Our proposed method is distinguished from these approaches that we directly generate
the decomposed core tensors for tensor decomposition in an end-to-end manner, instead of using
tensor decomposition methods as a submodule in NN.

3 Methodology

In this section, we will first define what is tensor decomposition and the tasks we are focusing on.
Then our proposed methods will be demonstrated.

3.1 Preliminaries

A tensor with order N ≥ 3 is denoted by Euler script letter, e.g., T ∈ RI1×...×IN . Each dimension
Ik is called a mode. An element of tensor T of index (i1, ..., in) is denoted by ti1,...,in . In this paper
we apply tensor decomposition to unsupervised tensor reconstruction, which consists two different
tasks: tensor completion and tensor denoising.

Tensor Completion For tensor completion, some of the entries in T̂ for the input tensor are missing.
Our goal is to complete these entries based on the entries which are observed (i.e., not missing). We
define a binary tensorW which represents the entries are not missing. W has the same shape with T̂ .
wi1,...,iN equals to 1 (resp., 0) means t̂i1,...,iN is observed (resp., missing). Assume T is the tensor
we obeserved, we have

ti1,...,iN = t̂i1,...,iN × wi1,...,iN . (1)

Tensor Denoising For tensor denoising, the original tensor T̂ is observed with random noise. We
define a noise tensor E , which represents the random noise (white Gaussian noise in our case). E has
the same shape with T̂ . Similarly to image completion, assume T is the tensor we observed, we have

ti1,...,iN = t̂i1,...,iN + ei1,...,iN . (2)

Tensor Decomposition Tensor decomposition methods have shown its powerful performance for
both tensor completion and denoising Kolda and Bader [2009]. Tensor decomposition is to decompose
T into several linear combinations of smaller core tensors as an approximation estimation, which can
be expressed as follow:

T ≈ X =� G(1), . . . ,G(N) �, (3)

where G(k) are called core tensors on k-th-mode and X is the approximated tensor. Here we focus
on the tensor decomposition methods that the model parameters will not grow exponentially by
the increase of the tensor order of T like CANDECOM/PARAFAC (CP) Harshman and others
[1970], Tensor Train (TT) Oseledets [2011] and Tensor Ring (TR) Zhao et al. [2016] decompsition
models, which means excluding Tucker decomposition Tucker [1966] models. For example, with TR
decomposition, all the core tensors are three-ordered tensor (i.e., G(k) ∈ RRk−1×Ik×Rk). Let Gk

ik
be

the ik-th lateral slice of the k-th core tensor, TR decomposition can be expressed as:

xi1,...,iN = Tr

(
N∏
k=1

G
(k)
ik

)
, (4)

where Tr(·) denotes calculating the trace on matrices. Here we call Rk as the rank for the k-th mode
and we have R0 = RN for TR decomposition. For the details of CP and TT decomposition methods,
please refer to the references.

Objective Function When applying different tensor decomposition methods, assume we have M
different groundtruth tensors {T̂1, . . . , T̂M}, the corresponding binary tensors {W1, . . . ,WM} (we
set W = 1 for tensor denoising task), the input tensors {T1, . . . , TM} which generated by the
groundtruth and binary tensors, and the reconstructed tensors {X1, . . . ,XM} where Xi =�

3

Algorithm 1 Gradient Descent for Tensor Decomposition.

Require: Input data {T1, . . . , TM}.
Ensure: Model parameters {G(1)i , . . . ,G(N)

i }Mi=1.
1: Randomly initialize {G(1)i , . . . ,G(N)

i }Mi=1.
2: while Not converged do
3: Calculate loss function L based on Eq. 5.
4: Update {G(1)i , . . . ,G(N)

i }Mi=1 based on Eq. 6.
5: end while

G(1)i , . . . ,G(N)
i �. The objective function for tensor decomposition is to optimize all the core

tensors {G(1)i , . . . ,G(N)
i }Mi=1 with:

L =
1

M

M∑
i=1

‖Wi ∗ (Ti −Xi)‖2F , (5)

where ‖·‖F means Frobenius norm and ∗ denotes element-wise product.

3.2 Gradient Descent for Tensor Decomposition

Since tensor decomposition is to approximate the original tensor with the core tensors and we defined
the objective function Eq. 5 for tensor decomposition, we can learn the core tensors with Gradient
Descent (GD) algorithm by calculating the partial derivatives of the core tensors on the objective
function and update the core tensors. The optimizing process for each iteration can be depicted by:

G(k)i ← G(k)i − λ∇G(k)
i
L, (6)

where λ stands for learning rate of each iteration.

The overall learning process for GD can be summarized in Alg. 1. We omit the binary maskW for
the input data to simplify the representation. We run GD with maximum of 10000 iterations or if
difference of the loss function between two adjacent iterations are close enough, i.e., for iteration t,
|Lt − Lt−1| < thd, where thd = 1e− 4.

3.3 Tensor Decomposition by Core Tensor Networks (CTN)

Traditional tensor decomposition methods always treat every tensor as an individual decomposition
process without searching for the correlation among them. We designed a simple neural network to
learn the core tensors based on the input tensor called Core Tensor Networks (CTN), which can build
global network models for all the input tensors and learn the core tensors based on the networks.

Assume f(θ(k), T) is the function representation for the network to learn the k-th core tensor with
network parameter θ, our framework can be illustrated as in Figure 1. We first vectorize the input
tensor and then feed the input vector to three fully-connected (FC) layers with an output size of 16,
32 and 32 correspondingly. The output size of the first layer is relatively small compared with the
corresponding input size for a low-rank compression. Each of the above three FC layers is followed
by an ELU Clevert et al. [2015] activation. Finally, we add another FC layer which has the same
size of output with the model parameters for G(k) and tensorize the output to the same shape to G(k).
All the input tensor Ti share the same network parameters while for different cores the parameters
differ (i.e., θ(a) 6= θ(b) for a 6= b). We call f(θ, Ti) as the main core tensors. We replace the original
k-th mode core tensor for input tensor Ti with:

G(k)i = f(θ(k), Ti) + B(k)i , (7)

where B(k)i is called as bias core tensors which are added to the main core tensors f(θ(k), Ti), which
for different input tensors we have different bias core tensors.

Similar to Algorithm 1, we can learn CTN by GD. We define each iteration for the main and bias
core tensors as:

θ(k) ← θ(k) − λ∇θ(k)L,B(k)i ← B(k)i − λ∇B(k)
i
L. (8)

4

Figure 1: An illustration of the proposed neural network framework which learn one of the core tensors. We first
flatten the input tensor by vectorization and then use four fully-connected (FC) layer to learn the core tensors.

Algorithm 2 Gradient Descent for Core Tensor Networks.

Require: Input data {T1, . . . , TM}.
Ensure: Model parameters {θ(1), . . . , θ(N)}.
Ensure: Model parameters {B(1)i , . . . ,B(N)

i }Mi=1.
1: Randomly initialize {θ(1), . . . , θ(N)}. Initialize {B(1)i , . . . ,B(N)

i }Mi=1 with zeros.
2: while Not converged do
3: Calculate loss function L based on Eq. 5.
4: Update θ(k), {B(k)i }Mi=1 for all k based on Eq. 6.
5: end while

The whole algorithm to learn CTN is depicted in Alg. 2. The advantage of the proposed network
structure is two-folded. On the one hand, algorithms for tensor decomposition models like Alternating
Least Squares (ALS)Harshman and others [1970]; Carroll and Chang [1970] and Stochastic Gradient
Descent (SGD)Yuan et al. [2019c]; Huang et al. [2013] always randomly initialize the core tensors
and update the core tensors iteratively. The values of the core tensors should be related to the original
values of the tensors because we can compute the core tensors with the inverse tensor and the original
tensor. With CTN we can initialize the core tensors with random projections of the input tensors,
which can improve the learning speed to converge faster for tensor decomposition. On the other hand,
the main core tensors share the same model parameter for all the input tensors, which means we can
combine different tensor decomposition process for better performance and robust results.

3.4 Transfer Learning for CTN

The most powerful advantage for neural networks (NN) is the scalability and generalizability of
different data. NN can learn models on training data and memorize the data patterns then infer
the results with fast or even without re-training on new data. Assume we have another training set
contains M ′ tensors {T ′1 , . . . , T ′M ′}, the goal of transfer learning for CTN (tCTN) is to pretrain the
model parameters for main core tensors with the training set and finetune the model to the test set
{T1, . . . , TM}. Note that the bias core tensors B(k) are learned for the input tensors individually.
They are re-initialized and not finetuned for testing.

The simplest way to implement tCTN is to ignore the bias core tensors and let the composition of
main core tensors be the reconstructed tensors on the training set, which means:

T ′i ≈ Xi =� f(θ(1), T ′i), . . . , f(θ(N), T ′i)� . (9)
However, due to the possible data distribution shift between the training set and test set, the training
process above may be harmful to the test set. Also, ignoring the bias core tensors will make the
objective too difficult for CTN, which may cause a failure of convergence. Inspired by the Meta-
Learning (or learning to learn) methods Finn et al. [2017]; Nichol et al. [2018], which learn models
applicable to different tasks, we decompose the learning process for main core tensors and bias core
tensors into two different tasks. For each iteration, we sample a batch of tensors from the training
set, we initialize the bias core tensors and optimize the bias core tensors with the current main core
tensors computed with the current network parameters. Then update the parameters for the main core
tensors based on the learned bias core tensors for the current batch.

5

Algorithm 3 Transfer Learning for Core Tensor Networks.

Require: Training data {T ′1 , . . . , T ′M ′}.
Require: Test data {T1, . . . , TM}.
Ensure: Model parameters {θ(1), . . . , θ(N)}.
Ensure: Model parameters {B(1)i , . . . ,B(N)

i }Mi=1.
1: Randomly initialize {θ(1), . . . , θ(N)}.
2: for iter in 1, . . . , itermax do
3: Sample a batch {T ′b1 , . . . , T

′
bm
} from training set. Initialize {B(1)i , . . . ,B(N)

i }Mi=1 with zeros.
4: for p in 1, . . . , γ do
5: Calculate L for {T ′b1 , . . . , T

′
bm
} based on Eq. 5.

6: Update {B(1)i , . . . ,B(N)
i }Mi=1 based on Eq. 6.

7: end for
8: Calculate L for {T ′b1 , . . . , T

′
bm
} based on Eq. 5.

9: Update θ(k) for all k ∈ [N] based on Eq. 6.
10: end for
11: Initialize {B(1)i , . . . ,B(N)

i }Mi=1 with zeros.
12: while Not converged do
13: Calculate L for {T1, . . . , TM} based on Eq. 5.
14: Update θ(k), {B(k)i }Mi=1 for all k based on Eq. 6.
15: end while

The detailed algorithm is depicted in Alg. 3. γ is a hyper-parameter that determines how precisely
we want to learn the bias core tensors in each batch update. When γ = 0, the algorithm equals to
the method in Eq. 9. With the help of transfer learning and meta-learning, CTN can learn tensor
decomposition with significantly fewer iterations and better performance.

4 Experiments

In this section, we first introduce the details and ablative study for our proposed CTN (Alg. 2) and
tCTN (Alg. 3). Then compare them with state-of-the-art image completion and denoising methods.

4.1 Implementation Details

To prove the effectiveness of our proposed method, we test CTN and tCTN on unsupervised image
completion and denoising tasks. Peak Signal-to-Noise Ratio (PSNR, the higher the better) and
Relative Square Error (RSE, the lower the better) are used for evaluation. We run all the experiments
on images with resolution 256× 256× 3. Following Yuan et al. [2019c], the images are reshaped
to a 9-order tensor with size 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 3. We use Adam optimizer with a
learning rate of 0.0001. β1 and β2 are set to be 0.9 and 0.999. All these parameters are determined
based on the best results by evaluating GD (Alg. 1). The image is down-scaled to 128× 128 before
feeding into CTN. The whole CTN contains about 14.5M parameters.

We use DIV2K Agustsson and Timofte [2017], which is a popular open-access dataset for image
denoising and enhancing, to evaluate our proposed method. All the experiments in the rest of the
paper is evaluated on the validation set of DIV2K, which contains 100 high-quality images. We use
X2 images collection in DIV2K and reshape the images to 256× 256 for the evaluation.

4.2 Ablative Studies

Effect of CTN (Alg. 2) Rank is the most important hyper-parameter to select for tensor
decomposition methods. To evaluate the effect of proposed CTN, we test TT and TR decomposition
on image completion with 0.9 missing rate under different fixed rank settings (performance for CP
decomposition is not good enough so we omit the results). For the sake of fair comparisons, we
evaluate both GD (Alg. 1) and CTN (Alg. 2) on TT with rank in {10, 12, 14} and TR with rank in
{8, 10, 12}. The proposed CTN are retrained for every settings of rank and tensor decomposition
formats. RSE results can be found in Table 2. We can see that CTN always performs better than GD

6

RSE for GD and CTN

TT(10) TT(12) TT(14) TR(8) TR(10) TR(12)
0

0.06

0.12

0.18

R
S

E

GD

CTN

Figure 2: Comparison of GD and CTN under
different settings of tensor decomposition.

0 2000 4000 6000 8000 10000

Iteration

0

0.1

0.2

0.3

L
o
s
s

tCTN

CTN

GD

Figure 3: Covergence performance of GD, CTN
and tCTN.

Metrics/Settings 0 5 10 20 50

RSE↓ 0.1284 0.1246 0.1212 0.1201 0.1211

Batch per Second↑ 26.53 19.53 13.44 9.93 4.68

Table 1: Comparison of different choices of γ for tCTN.

on the same setting of decomposition format and rank. We claim that is because CTN can learn the
structure information shared among all the images in the test set. Note that for the rest part of the
paper, we choose to use TR decomposition for our proposed model due to results in Table 2 and also
some other cross-validation tests.

The choice of γ in tCTN (Alg. 3) We train tCTN on the training set of DIV2k which contains 800
images. We train tCTN for 40 epoches with batch size equals to 4. The number of images is relatively
small for training a deep neural network model. Also, our proposed model is based on unsupervised
learning, which means the quality for training data is not that important and the data seeking much
easier. γ is an important hyperparameter for tCTN to determine how many steps to learn the bias core
tensor before updating the main core tensors. Larger γ will reduce the difficulty to learn CTN for
better performance while introducing more time to train the network. We vary γ in {0, 5, 10, 20, 50}
for tCTN and evaluate the performance on image completion task with missing rate 0.9. For a fair
comparison, we evaluate the results after training 300 iterations on the test set. The results can be
found in Table 1. Here we also put the training time for each batch with different settings of γ. As
we can see, when γ goes larger, RSE performance becomes better for tCTN. While when γ is large
enough, RSE remains consistent and does not grow. γ = 20 and γ = 50 have close RSE but γ = 50
consumes much more training time. We found that γ = 20 is the best choice based on the test results.
γ in Alg. 3 is set to be 20 in the rest of the paper. Note that the whole training process for tCTN takes
about 2.24 hours.

Speed Analyses In this section, we discuss the speed of our proposed method. We evaluate GD (1),
Alternating Least Square (ALS), CTN (2) and tCTN (3) on the test set with rank 10 TR decomposition.
GD and ALS are two of the most popular algorithm to solve tensor decomposition. All the algorithms
are tested on the same platform (Tensorflow implementation, Titan Xp GPU). The results are shown
in Table 2. We can see that CTN and tCTN outperform GD and ALS on both speed and accuracy.
Besides, tCTN uses much less time to give out a close performance compared with CTN. These
results proved the power of CTN in processing multiple tensor decomposition.

In Figure 3, we show the change of loss function in Eq. 5 with the number of iterations during the
optimizing process for convergence anylysis. We can see that CTN converges much faster (about
four times faster) compared with GD, while tCTN can sharply reduce the loss function with a few
iterations. Here both CTN and tCTN takes about 1.16 unit of time for each iteration compared with

7

Metrics/Algorithms GD ALS CTN tCTN

RSE↓ 0.1243 0.1229 0.1205 0.1201

Second per Image↓ 22.2 109.3 6.55 0.57

Table 2: Comparison of GD, ALS, CTN and tCTN for speed and accuracy.

GD. Note that CTN does not use auxiliary data to train but still performs so well, while tCTN uses a
small amount of auxiliary data to pretrain but converges much more faster.

Rate Metric BCPF TT-WOPT TR-ALS TRLRF CTN tCTN

0.9 PSNR↑ 19.69 23.21 22.22 22.27 23.50 23.53
RSE↓ 0.1868 0.1262 0.1396 0.1388 0.1205 0.1201

0.7 PSNR↑ 25.18 25.36 24.51 26.82 27.78 27.79
RSE↓ 0.0993 0.0972 0.1072 0.0822 0.0736 0.0735
Table 3: Comparison with state-of-the-art image completion methods.

Level Metrics TT-WOPT TR-ALS CTN tCTN

10dB PSNR↑ 19.24 19.69 20.17 20.33
RSE↓ 0.0849 0.0774 0.0686 0.0682

20dB PSNR↑ 19.48 20.03 20.23 20.34
RSE↓ 0.0804 0.0723 0.0682 0.0675

Table 4: Comparison with state-of-the-art image denoising methods.

4.3 Comparison with State-of-the-Art Methods

In this section, we compare our proposed CTN and tCTN with state-of-the-art (SOTA) methods that
have the same objective function in Eq. 5, for image completion and denoising, e.g., BCPF Zhao et
al. [2015], TT-WOPT Yuan et al. [2017], TR-ALS Wang et al. [2017], TRLRF Yuan et al. [2019b].
We evaluate both image completion and denoising task with PSNR and RSE. Results for image
completion are shown in Table 3. We evaluate all the SOTA methods for two different missing rates:
0.7 and 0.9. For both CTN and tCTN, we use TR decomposition with rank 16 and 8 for the missing
rate of 0.7 and 0.9 correspondingly. Results for image denoising are shown in Table 4. Note that we
implement the algorithms by ourselves for both TT-WOPT and TR-ALS for image denoising. We
use TR decomposition with rank 16 to test the images with 10dB and 20dB white Gaussian noise,
correspondingly.

We can see that CTN and tCTN achieve better accuracy on both image completion and denoising
tasks. All of these methods are unsupervised and based on CPU implementation. Among them, the
fastest algorithm is BCPF, which takes about 70 seconds for each 0.9 missing image completion.
Since the platform for these methods and our proposed method are different, but we can still see the
speedup obtained by CTN.

5 Conclusion

In this paper, we propose an efficient tensor decomposition algorithm that aims to learn a global
mapping from input tensors to latent core tensors. We train a deep neural network to model the
global mapping, and then it can be applied to decompose a newly given tensor with high efficiency.
Furthermore, we learn the initial values of the network based on meta-learning methods. With
the help of pretrained meta-learning based core tensor networks, our proposed method can learn
tensor decomposition extremely fast and accurately. Experimental results for image completion and
denoising show that our proposed method significantly improves tensor decomposition speed and
accuracy.

8

References
Evrim Acar, Daniel M Dunlavy, Tamara G Kolda, and Morten Mørup. Scalable tensor factorizations

for incomplete data. Chemometrics and Intelligent Laboratory Systems, 106(1):41–56, 2011.

Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution: Dataset
and study. In CVPR Workshops, 2017.

Johann A Bengua, Ho N Phien, Hoang Duong Tuan, and Minh N Do. Efficient tensor completion for
color image and video recovery: Low-rank tensor train. IEEE Transactions on Image Processing,
26(5):2466–2479, 2017.

J Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in multidimensional scaling
via an n-way generalization of “eckart-young” decomposition. Psychometrika, 35(3):283–319,
1970.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Marko Filipović and Ante Jukić. Tucker factorization with missing data with application to low-n-
rank tensor completion. Multidimensional Systems and Signal Processing, 26(3):677–692, Jul
2015.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In ICML, 2017.

Richard A Harshman et al. Foundations of the parafac procedure: Models and conditions for an
“explanatory” multimodal factor analysis. 1970.

Furong Huang, UN Niranjan, Mohammad Umar Hakeem, and Animashree Anandkumar. Fast
detection of overlapping communities via online tensor methods. arXiv preprint arXiv:1309.0787,
40:43, 2013.

Kui Jia and Shaogang Gong. Multi-modal tensor face for simultaneous super-resolution and
recognition. In ICCV, 2005.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review,
51(3):455–500, 2009.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan V. Oseledets, and Victor S. Lempitsky.
Speeding-up convolutional neural networks using fine-tuned cp-decomposition. CoRR,
abs/1412.6553, 2015.

Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye. Tensor completion for estimating
missing values in visual data. IEEE transactions on pattern analysis and machine intelligence,
35(1):208–220, 2012.

Hanpeng Liu, Yaguang Li, Michael Tsang, and Yan Liu. Costco: A neural tensor completion model
for sparse tensors. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2019.

Koji Maruhashi, Masaru Todoriki, Takuya Ohwa, Keisuke Goto, Yu Hasegawa, Hiroya Inakoshi, and
Hirokazu Anai. Learning multi-way relations via tensor decomposition with neural networks. In
AAAI, 2018.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):2295–
2317, 2011.

Oguz Semerci, Ning Hao, Misha E Kilmer, and Eric L Miller. Tensor-based formulation and
nuclear norm regularization for multienergy computed tomography. IEEE Transactions on Image
Processing, 23(4):1678–1693, 2014.

9

Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika,
31(3):279–311, 1966.

Wenqi Wang, Vaneet Aggarwal, and Shuchin Aeron. Efficient low rank tensor ring completion. In
ICCV, 2017.

Wenqi Wang, Yifan Sun, Brian Eriksson, Wenlin Wang, and Vaneet Aggarwal. Wide compression:
Tensor ring nets. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
9329–9338, 2018.

Xian Wu, Baoxu Shi, Yuxiao Dong, Chao Huang, and Nitesh V. Chawla. Neural tensor factorization
for temporal interaction learning. Proceedings of the Twelfth ACM International Conference on
Web Search and Data Mining, 2019.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by low
rank and sparse decomposition. In CVPR, 2017.

Jinshi Yu, Chao Li, Qibin Zhao, and Guoxu Zhou. Tensor-ring nuclear norm minimization and
application for visual: Data completion. In ICASSP, 2019.

Longhao Yuan, Qibin Zhao, and Jianting Cao. Completion of high order tensor data with missing
entries via tensor-train decomposition. In ICONIP, 2017.

Longhao Yuan, Chao Li, Jianting Cao, and Qibin Zhao. Randomized tensor ring decomposition and
its application to large-scale data reconstruction. In ICASSP, 2019.

Longhao Yuan, Chao Li, Danilo Mandic, Jianting Cao, and Qibin Zhao. Tensor ring decomposition
with rank minimization on latent space: An efficient approach for tensor completion. In AAAI,
2019.

Longhao Yuan, Qibin Zhao, Lihua Gui, and Jianting Cao. High-order tensor completion via gradient-
based optimization under tensor train format. Signal Processing: Image Communication, 73:53–61,
2019.

Amir Zadeh, Minghai Chen, Soujanya Poria, Erik Cambria, and Louis-Philippe Morency. Tensor
fusion network for multimodal sentiment analysis. arXiv preprint arXiv:1707.07250, 2017.

Qibin Zhao, Liqing Zhang, and Andrzej Cichocki. Bayesian cp factorization of incomplete tensors
with automatic rank determination. IEEE transactions on pattern analysis and machine intelligence,
37(9):1751–1763, 2015.

Qibin Zhao, Guoxu Zhou, Shengli Xie, Liqing Zhang, and Andrzej Cichocki. Tensor ring
decomposition. arXiv preprint arXiv:1606.05535, 2016.

10

	Introduction
	Related Works
	Methodology
	Preliminaries
	Gradient Descent for Tensor Decomposition
	Tensor Decomposition by Core Tensor Networks (CTN)
	Transfer Learning for CTN

	Experiments
	Implementation Details
	Ablative Studies
	Comparison with State-of-the-Art Methods

	Conclusion

