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Abstract

Tensor network (TN) decomposition is a promising framework to represent ex-
tremely high-dimensional problems with few parameters. However, it remains
challenging to search the (near-)optimal topological structures for TN decomposi-
tion, since the number of candidate solutions exponentially grows with increasing
the order of a tensor. In this work, we claim that the issue can be practically
tackled by genetic algorithms (GAs) in an affordable manner, and the key is to
encode the complex topological structures into fixed-length binary strings, a.k.a.,
chromosomes in the context of GA. The experimental results on natural images
demonstrate that, in the decomposition task, GA is able to discover more efficient
topologys than the well-known TN models within a small number of generations.

1 Introduction

How to use fewer parameters to represent data and models is a crucial issue in both machine learning
and scientific computing. To tackle this problem, tensor decomposition (TD), including CANDE-
COMP/PARAFAC decomposition [3], Tucker decomposition [30] and their variants [8], becomes a
promising framework, which decomposes high-order tensors into low-dimensional forms [15]. In
real-world applications, TD has been successfully applied to model compression [2], multi-modality
and multi-task learning [18, 22, 36], latent variable model [1, 19], data restoration [13, 37] to name a
few.

More recently, some studies brought the idea from physics to extend TD into a more sophisticated
form, i.e., tensor network (TN) [5, 6, 14], which derives various models such as tensor train (TT) [25],
tensor ring (TR) [38], hierarchical Tucker (HT, or tensor tree) [9] and their variants [12, 27]. More
interestingly, lots of studies in machine learning report overwhelming performance of the TN-based
methods compared to the conventional TDs [4, 10, 17, 23, 29, 31, 32]. On the other hand, we notice
that the existing TN-based methods are mainly developed by specifying the topology of the model, a
graphical structure used to model TN, such as path, cyclic, tree and grid (i.e., multi-cyclic) graphs.
Such a fact raises the question whether there exist “better or even optimal” topological structures
of TN decomposition for a given tensor, and how to efficiently search them? It is naturally expected
that the optimal topology of TN would be out of the box of the manucrafted structures yet with more
promising approximation capacity.

In this abstract, we investigate the topology search issue in a practical manner. The main idea is
to formulate the problem as combinatorial optimization and to apply the well-developed genetic
algorithms (GAs) to search the optimal structures. Specifically, we first reforge the graphical
representation of TN [6, 34] to obtain a unique descriptor (i.e., its adjacency matrix) for each
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topology, and then encode it into a fixed-length binary string. GAs are naturally applied by taking the
string as chromosome. More details of this work can be found from our conference paper [20].

2 Problem Setting

We first reforge the existing definition of the tensor network’s (TN’s) graphical representation. The
aim is to establish a bijective mapping from the TN structure to a simple graph. After that, we propose
a formal description of the topology search issue of TN decomposition. Due to the page limit, we
skip the background introduction of TN, and suggest to read the literature [6, 24] and the references
therein for details of the TNs.

2.1 Graphical Representation of Tensor Network

Given an undirected graph G = (V,E) we model a tensor network, by which the vertices V are
labeled by different symbols and the edges E are assigned with non-negative integer weights to
represent the index contraction [24] operations. Similar to [34], we assume that G is always a simple
graph. It implies that there exists no self-loop or multiple edges. Furthermore, we impose additional
rules onto the model to guarantee the bijection relationship:

Rule 1 Weight-one edges are not allowed.

Since dropping the weight-one edges does not change the expression of TN [34], Rule 1 eliminates
the possibility that two different graphs correspond to the same TN structure. Hence, under Rule
1, the correspondence between the TN structure and the graph G becomes one-to-one, which we
formalize as

Proposition 1 Given the number of vertices that are labeled distinctly, there is a bijection from an
arbitrary simple graph to the TN structure.

Due to the fact that the connectivity of the graph is not restricted in the model, we should further
define how to calculate TN from multiple isolated subgraphs.

Rule 2 The isolated subgraphs are “connected” by tensor outer product.

Rule 2 implies that, if there are multiple isolated subgraphs in TN, we first calculate the sub-blocks
defined by each isolated subgraph using index contraction, then merge all sub-blocks by trivial tensor
outer product. Last, the work in [34] does not consider the existence of internal cores (i.e., the core
tensors whose all indices are connected to other cores), such as the ones in Tucker decomposition
and multi-scale entanglement renormalization ansatz (MERA) [7]. Therefore, we further allow the
existence of the internal cores (vertices):

Rule 3 The vertices can be internal.

2.2 TN Decomposition and Topology Search

Based on the above definitions on TN’s graphical representation, below we give a general formulation
of TN decomposition. Specifically, TN decomposition is defined as representing a tensor X by a
series of index contraction operations on a collection of core tensors V := {Vi, i ∈ [N ]} under a
structure w.r.t. graph G = (V,E), and it can be therefore formulated as [21]

X = TN(V;A), (1)
where TN( · ;A) denotes the index contraction operations over the adjacency matrix A ∈ RN×N .
Note that the general model (1) can be degenerated to the conventional decomposition like Tucker,
TT, TR decomposition when we specify certain A. Hence it is not difficult to see that there exist many
TN decomposition models, which might efficiently represent a tensor yet do not belong to any known
TN decomposition model. In this work, we call the process of seeking the “unknown” TN models as
the topology search of TN, where the notion “topology” represents the graphical structure of a TN
decomposition model. Below, we give a formal statement of topology search for TN decomposition.

Problem 1 Given a tensor X , the topology search of TN is to find the optimal adjacency matrix A0,
such that there exist a set of core tensors V̂ that satisfies Eq. (1).
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Figure 1: An example to illustrate how to encode an order-4 tensor with TT-format into a binary string
a.k.a chromosome. First, the adjacency matrix is converted into a binary form; Subsequently, the
upper triangle aspect of the matrix is encoded as a binary string. In the context of GA, we generally
consider the binary strings as chromosomes or population and their entries as genes.

In different contexts, we can endow the notion “optimal” with different meanings, such as the sparsity
of graph or the minimum of the largest degree of vertex. In this abstract, we temporally consider to
seek a graphical structure of TN, which can use the fewest parameters to represent a given tensor.

3 GA-based Topology Search Method

From Eq. (1) and Problem 1 we see that the topology search of TN is equivalent to seeking the optimal
adjacency matrix A under some criteria. Problem 1 can be therefore formulated as an optimization
model:

min
A∈A

1

ε (A)
, s.t.

∥∥∥X − TN(V̂;A)
∥∥∥2
F
≤ δ, for some V̂, (2)

where A denotes the set that contains all possible adjacency matrices of a given size, ‖ · ‖F is the
Frobenius norm of a tensor, and ε(A) denotes the compression ratio of the TN decomposition under
the given A. It is defined as

ε(A) =
Uncompressed size of X

Parameter size of V under A
. (3)

As shown in Eq. (2), we maximize the compression ratio, under which the tensor X can be decom-
posed into a collection of cores Vi, ∀i. Compared to Problem 1, we further impose a tuning parameter
δ to provide a tolerance of the noise. It is because in machine learning problems, we often demand a
good TN approximation rather than the exact decomposition, and the latter can be accomplished by
setting δ = 0.

We can also see that Eq. (2) is a combinatorial optimization model when the weights of the edges
are bounded. Since the exhaustive search for such problem is unacceptable even for a small-scale
problem, we concern a practical alternative, where we are looking for near-optimal solutions that
practically well-perform, instead of considering the worst-case behavior of the problem.

To do so, we first encode TN’s topology into a fixed-length binary string, and then apply GAs to
searching the solution. For simplicity, in the rest, we assume that the number of vertices is fixed, and
the weights on edges are known and identical to each other. Then, we can encode the TN topology by
the upper triangle part (the diagonal entries are omitted) of adjacency matrices due to its symmetry
property. Figure 1 shows an example to encode an order-4 TT into a binary string. Taking the strings
as chromosomes, any genetic operators can be applied in the task.

4 Experimental Results on Natural Images

Below, we exploit the real-world data (natural images) to evaluate the approximation capacity of TN
decomposition with the discovered topology by GA.

Setup. We randomly select 10 natural images from the LIVE dataset [28]. The images have original
sizes of 256×256 and are tensorized to order-8 of the size 48. Also we implement TT-SVD [25] and
TR-SVD [38] in the experiment for comparison. In their methods, we manually adjust the tolerance
value to meet RSE obtained by our methods. In ours, we change the weights to be {6, 7} after the
topology search to simulate the cases with different approximation errors.

Results. The results are given in Table 1. As shown, our methods result in less number of parameters
(higher compression ratio) compared to TT-SVD and TR-SVD in over all data and settings. It implies
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Table 1: Experimental results of approximation of image data. We compare the log compression ratio
of GA (ours), TT-SVD, TR-SVD under close RSE value. In GA, the RSE between the original and
reconstructed images are obtained from the optimal individuals with their weights setting to 6 and 7.
A larger log compression ratio indicates fewer parameters of the model while a smaller RSE indicates
better approximation quality.

Data Log compression ratio (CR)↑ + RSE↓ – CR(RSE)

GA(weights=6) TT TR GA(weights=7) TT TR

0 0.901(0.137) 0.582(0.142) 0.469(0.141) 0.660(0.115) 0.325(0.115) 0.457(0.127)
1 1.352(0.158) 1.210(0.170) 1.216(0.187) 1.159(0.155) 1.137(0.166) 0.824(0.155)
2 1.452(0.176) 1.148(0.187) 1.231(0.206) 1.268(0.171) 0.898(0.179) 1.022(0.182)
3 1.649(0.193) 1.140(0.191) 1.416(0.211) 1.476(0.189) 1.265(0.206) 1.074(0.191)
4 0.859(0.152) 0.527(0.156) 0.403(0.153) 0.621(0.121) 0.408(0.143) 0.372(0.141)
5 1.726(0.087) 1.471(0.087) 1.471(0.088) 1.548(0.083) 1.531(0.083) 1.388(0.085)
6 1.332(0.110) 1.471(0.113) 1.212(0.124) 1.141(0.104) 1.088(0.101) 1.052(0.102)
7 1.573(0.126) 1.030(0.139) 1.112(0.145) 1.406(0.120) 1.179(0.142) 0.970(0.125)
8 1.679(0.085) 1.493(0.082) 1.387(0.085) 1.505(0.081) 1.493(0.082) 1.357(0.084)
9 1.164(0.194) 0.994(0.227) 0.836(0.200) 0.966(0.185) 0.774(0.190) 0.916(0.226)

Figure 2: Example to illustrate the employed images and their corresponding TN topological structures
obtained by GA.

that the discovered topological structures by GA has stronger express power on TN decomposition
than the simple line (TT) and cycle (TR) structures. Figure 2 gives some examples of the topological
structures obtained by GA. We can see that the obtained topology shows complex structures, which
are generally a combination of lines, cycles and isolated points. Such results are expected because
the natural images reflect complicated object relationship and abundant information.

5 Discussion and Concluding Remarks

Computational complexity. Although we have preferred applying the plain GA to the topology
search and the convergence is quite fast, the computational requirement is still dramatically larger
than TT-SVD and TR-SVD. The bottleneck mainly comes from the gradient-based decomposition
algorithm and repeated calculation of the decomposition to obtain the fitness score.

Potential applications. TN has been widely used in the deep learning community [11, 13, 16,
26, 32, 33, 35], but the topological structures used in their methods are assumed to be known and
fixed. Hence, we expect that searching more promising structures for TN may further improve the
performance in those tasks.

Conclusion. One aim of this work is to highlight the importance of the topology search for TN
decomposition and related tasks. We argue based on the empirical results that choosing a suitable
topological structure could significantly boost the express power of TN decomposition, and near-
optimal structures are sufficient to show their advantages compared to simple ones.
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