
Anomaly Detection with Tensor Networks

Jinhui Wang⇤

Stanford University
Stanford, CA 94305, USA
wangjh97@stanford.edu

Chase Roberts
X – The Moonshot Factory

Mountain View, CA 94043, USA
chaseriley@google.com

Guifre Vidal
X – The Moonshot Factory

Mountain View, CA 94043, USA
guifre@google.com

Stefan Leichenauer
X – The Moonshot Factory

Mountain View, CA 94043, USA
sleichenauer@google.com

Abstract

Originating from condensed matter physics, tensor networks are compact represen-
tations of high-dimensional tensors. In this paper, the prowess of tensor networks
is demonstrated on the particular task of one-class anomaly detection. We exploit
the memory and computational efficiency of tensor networks to learn a linear
transformation over a space with dimension exponential in the number of original
features. The linearity of our model enables us to ensure a tight fit around training
instances by penalizing the model’s global tendency to predict normality via its
Frobenius norm—a task that is infeasible for most deep learning models. Our
method outperforms deep and classical algorithms on tabular datasets and produces
competitive results on image datasets, despite not exploiting the locality of images.

1 Introduction

Anomaly detection (AD) entails determining whether a data point comes from the same distribution
as a prior set of normal data. Anomaly detection systems are used to discover credit card fraud,
detect cyber intrusion attacks and identify cancer cells. Since normal examples are readily available
while anomalies tend to be rare in production environments, we consider the semi-supervised or
one-class setting where only normal instances are present in the training set. It is important to remark
that the outlier space is often much larger than the inlier space, though anomalous observations are
uncommon. For instance, the space of normal dog images is sparse in the space of anomalous non-dog
images. This discrepancy between data availability and space sizes makes anomaly detection hard,
as one must manage a model’s behavior over the entire input space while only having information
of a minuscule subspace. Deep learning models generally struggle with this challenge due to their
unpredictability and tendency to overfit. Linear models, however, do not face such a difficulty.

To gain control over our model’s behavior on the entire input space, we employ a linear transformation
as its main component and subsequently penalize its Frobenius norm. However, this transformation
has to be performed over an exponentially large feature space for our model to be expressive—an
impossible task with full matrices. Thus, we leverage tensor networks as sparse representations of
such large matrices. All-in-all, our model is an end-to-end anomaly detector for general data that
produces a normality score via its decision function D. Our novel method is showcased on several
tabular and image datasets. We attain significant improvements over prior methods on tabular datasets
and competitive results on image datasets, despite not exploiting the locality of image pixels.

⇤Work done while a resident of X – The Moonshot Factory.
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2 Related Work

The early work of Stoudenmire and Schwab [39] demonstrated the potential of tensor networks
in classification tasks, using the well-known density matrix renormalization group algorithm [43]
to train a Matrix Product State (MPS) [36, 27] as a weight matrix in classifying MNIST digits
[20]. Subsequent work has also applied tensor networks in further classification tasks [38, 40] and
regression [30] while more recent focus has turned towards unsupervised settings [8, 16, 25].

The literature on anomaly detection (AD) is vast and we will focus on reviewing previous work in
the one-class context for arbitrary data (e.g. not restricted to images). Kernel-based methods, such
as the One-Class SVM (OC-SVM) [23], learn a tight fit of inliers in an implicit high-dimensional
feature space while the non-distance-based Isolation Forest [21] directly distinguishes inliers and
outliers based on partitions of feature values. Unfortunately, such classical AD algorithms presume the
clustering of normal instances in some feature space and hence suffer from the curse of dimensionality,
requiring substantial feature selection to operate on feature-rich, multivariate data [3].

As such, hybrid methods were developed to first learn latent representations using Auto-Encoders
(AE) [45, 2, 37] and Deep Belief Networks (DBN) [12], that were later fed to a OC-SVM. End-to-end
deep learning models, without explicit AD objectives, have also been devised. Auto-Encoder AD
models [17, 34, 7] learn an encoding of inliers and subsequently use the reconstruction loss as a
decision function. Other AE-variants, such as Deep Convolutional Auto-Encoders (DCAE) [24, 22],
have also been studied by [37, 31]. Next, generative models learn a probability distribution for inliers
and subsequently identify anomalous instances as those with low probabilities or those which are
difficult to find in their latent spaces (in the case of latent variable models). Generative Adversarial
Networks (GANs) [15] have been popular in the latter category, with the advent of AnoGAN [35], a
more efficient variant [46] based on BiGANs [10], GANomaly [1] and ADGAN [9].

Deep learning models with objectives that resemble shallow kernel-based AD algorithms have also
been explored. Such models train neural networks as explicit feature maps while concurrently finding
the tightest decision boundary around the transformed training instances in the output space. Deep
SVDD (DSVDD) [33] seeks a minimal-volume hypersphere encapsulating inliers, motivated by the
Support Vector Data Description (SVDD) [41], while One-Class Neural Networks (OC-NN) [6]
searches for a maximum-margin hyperplane separating normal instances from the origin, in a fashion
similar to OC-SVM. Contemporary attention has been directed towards self-supervised models,
mostly for images [14, 13, 18], with the exception of the more recent GOAD [4] for general data.
These models transform an input point into several altered instances according to a fixed class of rules
and train a classifier that predicts a score for each altered instance belonging to its corresponding
class of transformation. Outliers are then reflected as points with extreme scores, aggregated over all
classes. In particular, GOAD unifies DSVDD and the self-supervised GEOM model [14] by defining
the anomaly score of each transformed instance as its distance from its class’ hypersphere center.

3 Model Description

3.1 Overview

In this section, we introduce our model that we call Tensor Network Anomaly Detector (TNAD).
TNAD falls into the category of end-to-end models with explicit AD objectives, but with a crucial
caveat. Its notion of tightness does not rely on the volume of a decision boundary, which is an
inadequate measure in the one-class setting. To illustrate this point, DSVDD and GOAD find
hyperspheres around training instances but are not explicitly discouraged from mapping unseen or
anomalous instances to the same side. Thus, shrinking the boundary volume does not ensure a tight
fit around inliers. In the extreme case, DSVDD and GOAD may find tiny hyperspheres but still
have a loose fit around inliers, as they may map all possible inputs to the same point—a problem
acknowledged by the original authors of DSVDD as “hypersphere collapse” [41]. In the scenario
where outliers are available, one can indeed judge the tightness of a fit by the separation of inliers
and outliers with respect to a decision boundary but in the one-class setting where no such points of
reference are available, the tightness of a model’s fit on training instances must be gauged relative
to its predictions on unseen instances. A naive way of achieving this would then be to observe the
model’s behavior on random samples from the input space but such a scheme may be prohibitively
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expensive on a representative sample. To circumvent this difficulty, we design TNAD to incorporate
a canonical measure of its overall tendency to predict normality, which can be computed efficiently.

A schematic of TNAD is depicted in Figure 1. A fixed feature map � is applied to map inputs onto
the surface of a unit hypersphere in a vector space V with dimension exponential in the number
of original features N . The training instances are sparse in this high-dimensional space V and
thus enables the learnt component of our model to be expressive, despite being a simple linear
transformation P : V ! W . Upon action by P , normal instances will be mapped close to the
surface of a hypersphere in W of an arbitrarily chosen radius (set to be

p
e in our experiments) while

anomalous instances can be identified as those close to the origin. The decision function of the model
with respect to an input x, where a larger value indicates normality, is then

D(x) = kP�(x)k22 (1)

Figure 1: Schematic of Tensor Network Anomaly Detector (TNAD)

To accommodate the possible predominance of outliers, we allow dimW to have a smaller exponential
scaling with N so that dimW ⌧ dimV for P to have a large null-space. P can thus be understood
informally as a “projection” that annihilates the subspace spanned by outliers. To parameterize P

which has dimensions exponential in N , we leverage the Matrix Product Operator (MPO) tensor
network, which is both memory and computationally-efficient. Finally, to obtain a tight fit around
inliers, we penalize the Frobenius norm of P during training.

kPk2F = tr
�
P

T
P
�
=

X

i,j

|Pij |2 (2)

where Pij are the matrix elements of P with respect to some basis. Since kPk2F is the sum of squared
singular values of P , it captures the total extent to which the model is likely to deem an instance as
normal. Concretely, if {vi}1ik ⇢ V are singular vectors corresponding to the k non-zero singular
values {si}1ik of P , D(x) =

Pk
i=1 s

2
i | hvi,�(x)i |2 so penalizing kPk2F =

Pk
i=1 s

2
i has the

effect of reducing D(x) for general inputs (while encouraging vi’s to be aligned with �(x)’s seen
during training, as the desired D(x) of a training inlier is e > 0). Ultimately, such a spectral property
reflects the overall behavior of the model, rather than its restricted behavior on the training set.

3.2 Matrix Product Operator Model

In this section, the details of TNAD is expounded in tensor network notation—for which a brief
introduction is included in the appendix while more comprehensive reviews can be found in [5, 26].
The input space I is assumed to be [0, 1]N for (flattened) grey-scale images and RN for tabular data,
where N is the number of features. Given a predetermined map � : R ! Rp where p 2 N is a
parameter known as the physical dimension, an input x = (x1, ..., xN ) 2 I is first passed through
(see Figure 2) a feature map � : I ! V = ⌦N

j=1Rp defined by

�(x) = �(x1)⌦ �(x2)⌦ ...⌦ �(xN ) (3)

The map � is chosen to satisfy k�(y)k22 = 1 for all y 2 R such that k�(x)k22 =
QN

i=1 k�(xi)k22 = 1
for all x 2 I, implying that � maps all points to the unit hypersphere in V . In our experiments, we
used the following 2k-dimensional embedding

�(x) =
1p
k

⇣
cos

⇣
⇡

2
x

⌘
, sin

⇣
⇡

2
x

⌘
, ..., cos

⇣
⇡

2k
x

⌘
, sin

⇣
⇡

2k
x

⌘⌘
(4)
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which possesses the following natural interpretation for grey-scale images when p = 2k = 2. Since
�(0),�(1) are the two standard basis vectors e1, e2 of R2 = Rp, the set of binary-valued images
B = {x 2 I : xi 2 {0, 1} 81  i  N} is mapped to the standard basis of V . The squared
F-norm of our subsequent linear transformation P then obeys kPk2F =

P
x2B kP�(x)k22. Recalling

kP�(x)k22 as the value of TNAD’s decision function on an input x, kPk2F is thus conferred the
meaning of the total degree of normality predicted by the model on B—which is apt since images
with the best contrast should be the most distinguishable. The kPk2F penalty hence accounts for
a representative, exponential subset of input images—a challenging feat for non-tensor network
methods. Unfortunately, such an interpretation does not extend to tabular data but the ultimate role of
� is nevertheless to segregate points close in the L

2-norm of the input space I by mapping inputs
into the exponentially-large space V , buttressing the subsequent linear transformation P .

After the feature map, we learn a tensor P j1...jN
i1...iq

: V ! W = ⌦q
j=1Rp where q = bN�1

S c+ 1 for
some parameter S 2 N referred to as the spacing. Our parameterization of P in terms of rank-3 and
4 tensors is the variant of the Matrix Product Operator (MPO) tensor network in Figure 3.

Figure 2: TNAD embedding layer. Figure 3: Matrix product operator parameterization for P .

The modified MPO only has an outgoing red leg every S nodes, beginning from the first, to allow
dimW ⌧ dimV . The red legs again have dimension p while the gold legs have dimension b, which
is another parameter known as the bond dimension. Intuitively, the gold legs are responsible for cap-
turing correlations between features, for which a larger value of b is desirable. Next, tensor networks
for TNAD’s decision function and training penalty are depicted in Figures 4 and 5 respectively.

Figure 4: Squared norm of transformed vector. Figure 5: Squared F-norm of P .

Weaving the above together, our overall loss function over a batch of B instances xi is given by

Lbatch =
1

B

BX

i=1

⇣
log kP�(xi)k22 � 1

⌘2
+ ↵ReLU(log kPk2F ) (5)

where ↵ is a hyperparameter that controls the trade-off between TNAD’s fit around training points
and its overall tendency to predict normality. In words, P only sees normal instances during training
which it tries to map to vectors on a hypersphere of radius

p
e, but it is simultaneously deterred from

mapping other unseen instances to vectors of non-zero norm due to the kPk2F penalty. The log’s are
taken to stabilize the optimization by batch gradient descent since the value of a large tensor network
can fluctuate by a few orders of magnitude with each descent step even with a tiny learning rate.
Finally, the ReLU function is applied to the F-norm penalty to preclude the trivial solution of P = 0.

3.3 Contraction Order and Complexity

The tensor networks for kP�(x)k22 and kPk2F can be computed by a standard series of contractions.
As depicted in Figure 6, the initial step in computing kP�(x)k22 is vertically contracting the black
legs. In practice, only the bottom half of the network is contracted before it is duplicated and attached
to itself. An alternative first step, that is more parallelizable, is also explained in the appendix.
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At this juncture, observe that both kPk2F and the resulting network for kP�(x)k22 are of the form in
Figure 7, which can be computed efficiently by repeated zig-zag contractions. The overall time com-
plexities of computing kP�(x)k22 and kPk2F are O

�
Nb

2(b+ p)
� p
S + 1

��
and O

�
Nb

3
p
� p
S + 1

��
,

where only the former is needed during prediction. Meanwhile, the overall space complexity of
TNAD is O

�
Nb

2
p
� p
S + 1

��
. Notably, all quantities in Eqn 5 can be computed exactly in time and

space linear in N , forming the primary motivation behind our MPO parameterization. That said,
we expect there to be better-performing tensor networks for P which are either costlier to compute
exactly or require approximations to be tractable.

Figure 6: Initial steps in computing kP�(x)k22

Figure 7: Zig-zag contraction that is repeated till completion.

4 Experiments

The effectiveness of TNAD as a general AD model is verified on both image and tabular datasets.
The Area Under the Receiver Operating Characteristic curve (AUROC) is adopted as a threshold-
agnostic metric for all experiments. TNAD was implemented with the TensorNetwork library [32]
and optimized by batch gradient descent with the ADAM optimizer [19] in its default settings.

General Baselines: The general AD baselines evaluated are: One-Class SVM (OC-SVM) [23],
Isolation Forest (IF) [21], and GOAD [4]. OC-SVM and IF are traditional anomaly detection
algorithms known to perform well on general data while GOAD is a recent, state-of-the-art self-
supervised algorithm with different transformation schemes for image and tabular data. OC-SVM and
IF were taken off-shelf from the Scikit-Learn toolkit [28] while GOAD experiments were run with
the official code of [4]. For all OC-SVM experiments, the RBF kernel was used and a grid sweep was
conducted for the kernel coefficient � 2 {2�10

, ..., 2�1} and the margin parameter ⌫ 2 {0.01, 0.1}
according to the test set performance in hindsight—providing OC-SVM a supervised advantage. For
all IF experiments, the number of trees and the sub-sampling size were set to 100 and 256 respectively,
as recommended by the original paper. GOAD parameters are reported in the specific subsections.

Remark about experimental protocol: Model selection has traditionally been a difficult problem in
one-class AD since anomalies are needed to determine the AUROC but are presumed to be unavailable
at the juncture of training. Even if anomalies were available, using them in a validation set also
implicitly provides anomaly information, violating the one-class setting. As such, we adhered to
the train-test protocol in the literature (e.g. [4, 14, 33]). We fix the bond dimension at b = 5, which
is the largest value that allowed our image experiments to finish in reasonable time, and choose
hyperparameters according to heuristics explained in Section 4.2. Subsequently, we conduct separate
experiments which suggest that TNAD is insensitive to a wide regime of hyperparameter choices.
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4.1 Image Experiments

Datasets: Our image experiments were conducted on the MNIST [20] and Fashion-MNIST [44]
datasets, each comprising 60000 training and 10000 test examples of 28 ⇥ 28 grey-scale images
belonging to ten classes. In each set-up, one particular class was deemed as the inliers and all original
training instances corresponding to that class were retrieved to form the new training set, containing
roughly 6000 examples. The trained models were then evaluated on the untouched test set.

Additional Image Baselines: To illustrate the strengths of our approach, we include further compar-
isons to Deep SVDD (DSVDD) [41] and ADGAN [9], which entail convolutional networks. DSVDD
experiments were performed with the original code while ADGAN results are reported from [9, 14].

Preprocessing: For all models besides DSVDD, the pixel values of the grey-scale images were
divided by 255 to obtain a float in the range [0, 1]. Due to the computational complexity of TNAD, a
(2, 2)-max pool operation with stride (2, 2) was also performed to reduce the size of the images to
14⇥14 only for our model. In the cases of TNAD, OC-SVM and IF, the images were flattened before
they were passed to these models—which thus do not exploit the inherent locality of the images, as
contrasted with the convolutional architectures employed by all other models. For GOAD, the images
were zero-padded to size 32 ⇥ 32 to be compatible with the official implementation designed for
CIFAR-10. Finally, for DSVDD, the images were preprocessed with global contrast normalization in
the L

1-norm and subsequent min-max scaling to the interval [0, 1], following the original paper.

Baseline Parameters: The convolutional architectures and hyper-parameters of all deep baselines
(GOAD, DSVDD, ADGAN) follow their original work. GOAD was run with the margin parameter
s = 1 and the geometric transformations of GEOM [14] involving flips, translations and rotations.
DSVDD was run with ⌫ = 0.1 and a two-phased training scheme as described in the original paper.

TNAD Parameters: TNAD was run with physical dimension p = 2, spacing S = 8, sites N =
14⇥ 14 = 196 and margin strength ↵ = 0.4. All tensors were initialized via a normal distribution
with standard deviation 0.5. As an aside, TNAD is sensitive to initialization for large N since it
successively multiplies many tensors, causing the final result to vanish or explode if each tensor is
too small or big—we found a standard deviation of 0.5 to be suitable for N = 196 and the final
performance of TNAD to not vary significantly once it was initialized in a reasonable regime. As a
further precaution, TNAD was first trained for 20 “cold-start” epochs with learning rate 2⇥ 10�5 to
circumvent unfortunate initializations and a subsequent 280 epochs with initial learning rate 2⇥10�3

decaying exponentially at rate 0.01, for a total of 300 epochs. A small batch size B = 32 was used
due to memory constraints. Finally, since only the log’s of tensor network quantities are desired, we
employ the trick of rescaling tensors by their element of largest magnitude during contractions and
subsequently adding back the log of the rescaling to stabilize computations.

Results and Discussion: Our results on image datasets are presented in Table 1. The mean AUROC
across ten successful trials are reported for each model and each class chosen as the inliers. Occasion-
ally, GOAD experienced “hypersphere collapse” while TNAD encountered numerical instabilities
which led to nan outputs—these trials were removed. Ultimately, TNAD produces consistently strong
results and notably emerges second out of all evaluated models on MNIST, surpassing all convolu-
tional architectures besides GOAD despite not exploiting the innate structure of images. Furthermore,
TNAD shows the lowest variation in performance other than the deterministic OC-SVM, possibly
attributable to its linearity. OC-SVM exhibits a comparably strong performance though it was ad-
mittedly optimized in hindsight. Intriguingly, the common denominator of TNAD and OC-SVM
operating in enormous spaces—exponentially large for TNAD and implicitly infinite-dimensional
for OC-SVM (via the RBF kernel)—indicates that the adjacency of image pixels may not be too
important in MNIST and Fashion-MNIST, as long as the transformed feature space is large enough.

Attaining the highest AUROC on most classes, GOAD undeniably triumphs all other evaluated
models on images. However, GOAD’s performance dip on MNIST digits {0, 1, 8}, which are largely
unaffected by the horizontal flip and 180� rotation used in its transformations, suggests that its success
relies on identifying transformations that leverage the underlying structure of images. Indeed, its
authors [4] acknowledge that the random affine transformations used in GOAD’s tabular experiments
degraded its performance on images. As such, TNAD’s performance as a general AD model is
especially encouraging, considering its ignorance of the inputs being images. For image-specific
applications, it is likely for tensor network parameterizations of P that capture two-dimensional
correlations, such as PEPS [42], to fare better.
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Table 1: Mean AUROC scores (in %) and standard errors on MNIST and Fashion MNIST

Dataset c SVM IF GOAD DSVDD ADGAN TNAD

MNIST

0 99.5 96.4± 0.6 98.4± 0.4 98.2± 0.6 99.5 99.2± 0.0
1 99.9 99.4± 0.1 96.5± 0.9 99.6± 0.1 99.9 99.8± 0.0
2 92.6 75.1± 1.8 99.6± 0.0 90.3± 2.5 93.6 92.7± 0.3
3 93.8 83.0± 1.2 98.6± 0.2 90.1± 2.3 92.1 96.0± 0.3
4 97.1 87.0± 0.9 99.2± 0.2 94.5± 1.1 93.6 94.9± 0.3
5 95.5 74.8± 0.8 99.5± 0.1 87.1± 1.4 94.4 95.1± 0.3
6 98.8 86.9± 0.9 99.9± 0.0 98.8± 0.3 96.7 98.9± 0.0
7 96.6 91.2± 0.7 98.2± 0.5 94.9± 0.6 96.8 97.1± 0.3
8 90.8 73.7± 1.1 96.9± 0.4 93.3± 1.1 85.4 94.9± 0.3
9 96.3 88.1± 0.6 99.0± 0.2 96.3± 0.9 95.7 97.2± 0.1

avg 96.1 84.6 98.6 94.3 94.7 96.6

Fashion-
MNIST

0 91.9 91.0± 0.2 93.4± 0.6 90.1± 0.8 89.9 92.5± 0.2
1 99.0 97.6± 0.1 98.6± 0.2 98.7± 0.1 81.9 97.5± 0.1
2 89.4 87.1± 0.4 90.4± 0.6 88.1± 0.7 87.6 90.6± 0.1
3 94.2 93.2± 0.3 91.0± 1.5 93.4± 1.0 91.2 91.8± 0.2
4 90.6 90.2± 0.5 91.4± 0.4 91.8± 0.5 86.5 90.5± 0.1
5 91.8 92.8± 0.2 94.7± 0.7 89.1± 0.7 89.6 87.5± 0.3
6 83.5 79.5± 0.6 83.2± 0.6 80.3± 0.8 74.3 82.7± 0.1
7 98.8 98.3± 0.1 98.3± 0.5 98.4± 0.2 97.2 98.9± 0.0
8 89.9 88.5± 0.9 98.8± 0.2 92.9± 1.3 89.0 92.0± 0.4
9 98.2 97.6± 0.3 99.3± 0.2 99.0± 0.1 97.1 97.8± 0.2

avg 92.7 91.6 93.9 92.2 88.4 92.2

In each row, the c-th class is taken as the normal instance while all other classes are anomalies.
The top two results in each experiment are highlighted in bold. OC-SVM, which is abbreviated as
SVM above, did not show variations in performance once it has converged so no standard errors are
reported. ADGAN’s results were borrowed from [9, 14] which did not include error bars.

4.2 Tabular Experiments

Datasets: We evaluate TNAD and other general baselines on 5 real-world ODDS [29] datasets derived
from the UCI repository [11]: Wine, Lympho, Thyroid, Satellite, Forest. These were selected to
exhibit a variety of dataset sizes, features and anomalous proportions—detailed information regarding
them is presented in Table 2. Following the procedure of [4], all models were trained on half of the
normal instances and evaluated on the other half plus the anomalies.

Preprocessing: The data was normalized so that training examples had zero mean and unit variance.

Baseline Parameters: GOAD employs random affine transformations with output dimension r for
self-supervision on tabular data and trains a fully-connected classifier with hidden size h and leaky-
ReLU activations. We adhere to the hyperparameter choices in the original paper, setting r = 64,
h = 32 and 25 training epochs for the large-scale dataset Forest and r = 32, h = 8 and 1 training
epoch for all other smaller-scale datasets. Finally, we also train DAGMM [47] using its original
Thyroid architecture for epochs in {10000, 20000, 30000, 40000} and report the best results.

TNAD Parameters: The dimensions of the input and output spaces V and W , which depend on the
parameters N , p and S, are crucial to TNAD. As the number of features N varies across datasets, we
choose p and S according to the following heuristics. We set S = bN

25c+ 1 and subsequently choose
p such that 104  dimW = p

bN�1
S c+1  1012, with a preference for smaller p on smaller datasets.

The first rule imposes an appropriate nullspace of P while the second ensures that the dimension is
large enough to exploit the prowess of tensor networks while concurrently small enough to ensure
stable training (see Section 4.3). On the smallest datasets Wine and Lympho, we set ↵ = 0.3 while
the other datasets used ↵ = 0.1. To motivate this choice, one expects a learnt kPk2F to scale linearly
with the training set size |T | (consider the case of memorizing the training set). However, the first
term in the loss function in Eqn 5 is independent of |T | so for both terms in the loss function to be
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comparable, ↵ should be ⇥
⇣

1
log |T |

⌘
. The two-phased training scheme is adopted as before for the

small tensor networks in Wine, Lympho, Thyroid while lower learning rates of 5⇥ 10�6 damped and
5⇥ 10�4 undamped were used for larger models to stabilize training. A batch size of 32 was used for
all datasets besides Forest which used 512. A summary of TNAD parameters is provided in Table 2.

Table 2: Information about ODDS datasets, sorted by size, and TNAD parameters used.

Dataset # Train # Test TNAD Parameters
Normal Anomalous N p S dimW ↵ lr

Wine 59 60 (85.7%) 10 (14.3%) 13 4 1 6.7e7 0.3 2e-3
Lympho 71 71 (92.2%) 6 (7.8%) 18 2 1 2.6e5 0.3 2e-3
Thyroid 1839 1840 (95.2%) 93 (4.8%) 6 6 1 4.7e4 0.1 2e-3
Satellite 2199 2200 (51.9%) 2036 (48.1%) 36 4 2 6.9e10 0.1 5e-4
Forest 141650 141651 (98.1%) 2747 (1.9%) 10 8 1 1.1e9 0.1 5e-4

Results and Discussion: Table 3 shows the mean AUROC from our experiments. Due to the large
variance caused by its stochastic nature, GOAD was run for 500 trials on small-scale datasets and
100 trials on Forest. All other models were run for 10 trials. TNAD is the best performer across all
datasets. Its drastic improvements over the respective best baseline and best deep baseline on the
smallest datasets Wine and Lympho bear credence to the F-norm penalty’s effectiveness in ensuring a
tight fit around scarce inliers. GOAD’s poorer performance on Lympho, Satellite and Forest supports
the expectation that affine transformations may not suit general data. All-in-all, TNAD is arguably
the best AD model out of those compared, given no prior domain knowledge of the underlying data.

Table 3: Mean AUROC scores (in %) and standard errors on ODDS datasets.

Dataset OC-SVM IF GOAD DAGMM TNAD

Wine 60.0 46.0± 8.4 48.2± 24.7 51.7± 19.3 97.3± 4.5
Lympho 92.5 87.1± 2.3 68.9± 12.3 65.7± 16.6 93.9± 2.2
Thyroid 98.8 99.0± 0.1 95.8± 1.3 88.8± 6.8 99.0± 0.1
Satellite 79.9 77.2± 0.9 60.6± 5.3 72.1± 4.7 81.3± 0.5
Forest 97.7 71.7± 2.6 64.6± 4.7 60.9± 8.9 98.8± 0.6

The top two results in each experiment are highlighted in bold. OC-SVM did not show variations in
performance once it has converged so no standard errors are reported.

4.3 Sensitivity to Hyperparameters

Table 4 reports the results of a grid sweep over hyperparameters ↵, b, S on MNIST digit “0” downsam-
pled to 7⇥ 7. As expected, a steady albeit small improvement in TNAD’s performance is observed
as b is increased. Meanwhile, TNAD’s consistent performance with S except for the extreme value
S = 48 suggests that whether an image x is digit “0” only depends on the inner product of �(x)
with a few (but more than one) singular vectors in the tensor product space V . In light of this, we also
experimented with the limiting case of S = 50 and dim(W ) = 1 such that P effectively reduces to a
Matrix Product State (MPS) [36, 27]. Such a MPS model failed to fit the training set—confirming that
the extra degrees of freedom introduced by the MPO are necessary. Next, TNAD’s stable performance
with ↵ implies that ↵ only needs to be large enough for the F-norm penalty to set in. Finally, the effect
of varying p was tested on another ODDS dataset Breastw. As shown in Figure 8, the average log
decision score 1

|T |
P

x2T logD(x) oscillates around one during training, due to the two conflicting
objectives in the loss function. For small p, the oscillation amplitude decays with epochs so TNAD
fits the training set. Unsurprisingly, this is not observed for large p, since successive multiplications
of large tensors amplify individual changes caused by gradient descent. This is a call for improved
optimization schemes (e.g. sweeping techniques) for future work. With the current gradient descent
method, it is recommended to plot the average training log decision score with training epochs and
select the largest value of p (guided by our heuristics) for which the oscillation eventually stabilizes.
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Table 4: Hyperparameter sweep on MNIST
with defaults b = 5, S = 8,↵ = 0.3.

b ROC

2 83.4
3 96.9
4 97.0
5 97.2
6 97.3
7 97.4
8 97.6

S ROC

1 97.0
2 97.1
4 97.2
8 97.2

12 97.2
24 97.2
48 94.1

↵ ROC

3e-3 83.8
1e-2 85.5
3e-2 92.1
1e-1 97.0
3e-1 97.2
1e0 97.2
3e0 97.3

Figure 8: Train log decision score on Breastw for vary-
ing p (Test ROC) and defaults b = 5, S = 1,↵ = 0.3.

4.4 Empirical time and memory costs

Finally, Table 5 presents the empirical training time, inference time per example, and (training)
memory costs of the general AD models in our experiments. OC-SVM and IF were run on a Intel
Xeon CPU @ 2.20GHz while GOAD and TNAD were run on a NVIDIA Tesla V100 GPU. As
expected, the first general observation is that the time and memory costs of the classical models
(OC-SVM and IF) are roughly two orders of magnitude smaller than the heftier GOAD and TNAD
models. Next, GOAD’s training time and memory scale unfavourably with the dataset size due to
its expensive dataset transformations, as reflected in MNIST and Forest. Finally, although TNAD
generally requires the longest training time, its inference time is relatively shorter since it only has to
compute the decision function D during inference as opposed to both D and kPk2F during training.

Remarkably, TNAD’s inference time is 26 times faster than GOAD’s on MNIST, despite GOAD
being expedited by convolutions. Meanwhile, TNAD’s inference time on tabular datasets is similar
to GOAD’s, with the former attaining an edge on Thyroid, Satellite, and Forest. This discrepancy
in the relative inference times on image and tabular datasets primarily stems from GOAD’s deeper
and shallower architectures on the respective datasets. Ultimately, TNAD and GOAD consume
comparable resources, albeit both significantly more than OC-SVM and IF.

Table 5: Training times (s), inference times (s / example) and memory costs (Mb) of AD models.

Dataset OC-SVM IF GOAD TNAD
Train Infer Mem Train Infer Mem Train Infer Mem Train Infer Mem

MNIST 37 0.0045 16 5.8 1.6e-4 11 1400 0.034 4400 6200 0.0013 380*
Wine 0.0018 1.7e-5 0.15 0.87 0.0027 0.83 5.7 0.0042 100 170 0.0092 970

Lympho 0.0017 1.8e-5 0.15 0.83 0.0022 0.94 6.5 0.0041 160 220 0.0094 980
Thyroid 0.0085 2.6e-6 0.20 0.92 1.2e-4 1.6 150 0.0034 200 180 0.0014 970
Satellite 0.043 1.5e-5 0.51 0.98 7.4e-5 1.1 170 0.0035 230 770 4.9e-4 980
Forest 24 5.3e-5 0.78 4.7 2.1e-5 1.3 4600 3.9e-4 4700 740 3.4e-6 960

* TNAD’s memory cost on MNIST is relatively smaller due to a large spacing S = 8.

5 Conclusion

In this paper, we have introduced TNAD as an adept anomaly detection model for general data. To
the best of our knowledge, it is the first instance of a tensor network model that is competitive with
state-of-the-art classical and deep methods, possibly pushing the rising field of tensor networks for
machine learning into the practical regime. All-in-all, TNAD demonstrates how even elementary
tensor network algorithms can become potent tools when thoughtfully applied to suitable problems.

Acknowledgements: The authors are grateful to X – The Moonshot Factory for supporting this
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Appendix to Anomaly Detection with Tensor
Networks

1 Introduction to Tensor Networks

A simplified overview of tensor networks is provided to make the paper accessible to a wider
audience. A tensor A of rank k can be regarded as a generalized array whose (i1, ..., ik)-th element is
Ai1...ik 2 R. A common abuse of notation is to refer to the tensor itself as Ai1...ik since the indices
i1, ..., ik are “free” in the sense that they can be varied arbitrarily and the collection of all possible
indices uniquely determines the tensor. In tensor network notation, a tensor of rank k is represented
by a node with k legs, where each leg represents a certain index or axis of the tensor. As depicted in
Figure 1a) and b), a rank-1 tensor or vector vi has a single leg denoting index i while a rank-2 tensor
or matrix M j

i (upper index to be explained below) has two legs denoting indices i and j.

Figure 1: Common tensors and operations. a) vector vi, b) matrix M j
i , c) tensor product (v ⌦

M)kij = viMk
j , d) matrix product with vector (Mv)i = M j

i vj , e) matrix product with matrix
(M1M2)ki = (M1)

j
i (M2)kj .

Now, one can interpret the same tensor Ai1...ik in various ways. Letting the size of the axis along ij
be dj , one can firstly view Ai1...ik as a vector in a

Qk
j=1 dj-dimensional vector space whose standard

basis vectors {ei1,...,ik} are indexed by i1, ..., ik such that the coordinate of A with respect to ei1,...,ik
is Ai1...ik . This vector space is known as the tensor product space ⌦k

j=1Rdj . Another perspective
partitions the indices i1, ..., ik at some ip for 1  p  k and re-expresses A as Ai1...ip

ip+1...ik
. In this

case, we can see A as a linear transformation from a
Qp

j=1 dj-dimensional vector space ⌦p
j=1Rdj

with standard basis vectors
�
ei1,...,ip

 
to a

Qk
j=p+1 dj-dimensional vector space ⌦k

j=p+1Rdj with

standard basis vectors
n
e0ip+1,...,ik

o
. The coordinate of the transformed basis vector A

�
ei1,..,ip

�

with respect to e0ip+1,...ik is Ai1...ip
ip+1...ik

. Viewing a n⇥m matrix M as a linear transformation from
Rm to Rn, we hence write it as M j

i . Indeed, one can easily check that the i-th coordinate of the
transformed j-th basis vector of the input space is M j

i . Thus, one can generally deem a tensor as
a linear transformation from the input space represented by its upper indices to the output space
represented by its lower indices. It turns out that our model will employ a tensor with signature
P j1...jN
i1...iq

where all indices have dimension p. Then, P can be seen as a linear transformation from
V = ⌦N

j=1Rp to W = ⌦q
i=1Rp. Henceforth, we will adopt the notation for tensors with upper and

lower indices for clarity, without affecting how tensors are reflected in tensor network diagrams.

Next, there are two important operations that enable the construction of new tensors. The tensor
product C = A ⌦ B of tensors A

j1...jq
i1...ip

and B
l1...lq0
k1...kp0

, with respective ranks p + q and p0 + q0, is
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a rank-(p + p0) + (q + q0) tensor with elements defined by C
j1...jql1...lq0
i1...ipk1...kp0

= A
j1...jq
i1...ip

B
l1...lq0
k1...kp0

. In
tensor network notation, the nodes A and B are placed side-by-side and C can be treated as their
super-node with (p+ p0) + (q + q0) legs, as shown in Figure 1c). In our main text, we repeatedly
apply the (associative) tensor product to build high-rank embeddings from a rank-1 embedding.
Concretely, given a map � : R ! Rp which only takes a single input, we construct a multivariable
map � : RN ! ⌦N

i=1Rp defined by �(x) = �(x1) ⌦ ... ⌦ �(xN ), where x = (x1, ..., xN ). Its
elements are given by �(x)i1...iN = �(x1)i1 ⇥ ...⇥ �(xN )iN . In tensor network notation,

Figure 2: Embedding layer of our TNAD model.

The other operation, known as contraction, was inspired by Einstein’s summation convention. When-
ever a single index appears as both a lower and upper index, it is implicitly summed over. This is
convenient in “multiplying tensors” as the product of a n ⇥ m matrix M j

i with a m-dimensional
matrix vj can be written as (Mv)i =

Pm
j=1 M

j
i vj = M j

i vj , where the summation was explicit
in the second expression. Similarly, the product of a l ⇥ m matrix (M1)

j
i with a m ⇥ n matrix

(M2)kj becomes (M1M2)ki =
Pm

j=1(M1)
j
i (M2)kj = (M1)

j
i (M2)kj . Thus, operations such as matrix

multiplication can be performed intuitively by just keeping track of indices appearing on both sides
of the equation. Ultimately, the outcome of a contraction between two tensors is a single tensor with
the combined indices of both tensors, minus the contracted indices.

In tensor network notation, the contraction of a repeated index is illustrated by connecting the two
legs that the index appears in. As contracted indices (i.e. connected legs) do not appear in the result,
only “dangling” or free legs become indices in the result of a diagram. Note that there is a distinction
between a representing a contraction (via connecting legs in a diagram) and actually performing
the contraction (computing the sums along connected legs and absorbing the two contracted nodes
into a single node)—the latter will be depicted in our paper by encapsulating to be contracted nodes
with a blue oval (see Figure 1d and e). This distinction is important because the time complexity of
computing the result of a diagram depends on the order of performing contractions. As such, one
usually identifies the entire diagram to be computed, before finding an efficient contraction sequence.

In our main paper, we adopt the following parameterization for a tensor P j1...jN
i1...iq

, where q = bN�1
S c+1

for some S 2 N, based on a variant of the Matrix Product Operator (MPO) tensor network.

Figure 3: Matrix product operator parameterization for P .

P only has an outgoing red leg every S nodes while its connected gold legs represent contractions. The
output vector obtained from performing the transformation P on an embedded vector �(x) (defined
above) can then be illustrated by connecting the bottom legs of P to those of �(x), analogous to the
matrix-vector product in Figure 1d. In explicit tensor indices, (P�(x))i1...iq = P j1...jN

i1...iq
�(x)j1...jN .

Figure 4: Transformed vector upon action by P
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Finally, given a tensor Aj1...jq
i1...ip

, we can construct a dual tensor A⇤ by exchanging the lower and upper
indices of A, (A⇤)

i1...ip
j1...jq

= A
j1...jq
i1...ip

. This is the natural generalization of the transpose operation for

matrices which satisfies
�
MT

�j
i
= M i

j . Since this is just a reshaping of the tensor, we often refer
to the dual tensor of Aj1...jq

i1...ip
as Ai1...ip

j1...jq
for brevity. A quantity that will be particularly important in

our main text is the contraction of a tensor Aj1...jq
i1...ip

with its dual Ai1...ip
j1...jq

; kAk2F = A
j1...jq
i1...ip

A
i1...ip
j1...jq

.
Interpreting A

j1...jq
i1...ip

in terms of a linear transformation, kAk2F is simply the sum of the squared matrix
elements of the transformation and hence refers to the Frobenius norm squared. As a special case, the
Frobenius norm of a vector is equivalent to its L2 norm. If A is represented by a tensor network, the
tensor network for kAk2F can be obtained from duplicating the tensor network of A and connecting
corresponding free legs between A and its duplicate (the dual tensor). This is exploited to draw the
tensor networks of the squared L2-norm kP�(x)k22 and the Frobenius norm kPk2F as

Figure 5: Squared L2-norm of the transformed vector

Figure 6: Frobenius norm of P

2 Alternative Contraction Scheme for TNAD’s Decision Function

As depicted in Figure 7, alternative initial steps in computing kP�(x)k22 are vertical contractions
of black legs followed by right-to-left contractions along horizontal segments between consecutive
red legs. As before, only the bottom half of the network is contracted before it is duplicated and
attached to itself in practice. Subsequently, the resultant network can again be computed via zig-zag
contractions. Although this alternative scheme does not ultimately lead to a smaller overall time
complexity, it greatly benefits from parallelism for large spacing S since each worker unit can be
responsible for contracting different horizontal blocks between consecutive red legs.

Figure 7: Alternative initial step in computing kP�(x)k22
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