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Abstract

Tensor networks are a powerful modeling framework developed for computa-1

tional many-body physics, which have only recently been applied within machine2

learning. In this work we utilize a uniform matrix product state (u-MPS) model3

for probabilistic modeling of sequence data. We first show that u-MPS enable4

sequence-level parallelism, with length-n sequences able to be evaluated in depth5

O(log n). We then introduce a novel generative algorithm giving trained u-MPS6

the ability to efficiently sample from a wide variety of conditional distributions,7

each one defined by a regular expression. Special cases of this algorithm corre-8

spond to autoregressive and fill-in-the-blank sampling, but more complex regular9

expressions permit the generation of richly structured text in a manner that has10

no direct analogue in current generative models. Experiments on synthetic text11

data find u-MPS outperforming LSTM baselines in several sampling tasks, and12

demonstrate strong generalization in the presence of limited data.13

1 Introduction14

Tensor network models have long represented the state of the art in modeling complex quantum15

systems [35, 11, 23], but have only recently been utilized as models for machine learning [21,16

8, 32, 22, 17, 31, 6]. In contrast to neural networks, tensor networks forgo the use of nonlinear17

activation functions, relying instead on multiplicative interactions to capture complex correlations18

within data. This gives tensor networks a convenient mathematical structure suitable for proving19

powerful theoretical results, such as the separation in expressivity between almost all deep tensor20

networks and their shallow counterparts [8]. However, these distinctive properties have yet to be21

leveraged for attaining equally impressive operational capabilities, which would give support for the22

wider adoption of tensor network models in real-world machine learning tasks.23

In this work we apply a recurrent tensor network, the uniform matrix product state (u-MPS), to the24

task of probabilistic sequence modeling, and identify several novel abilities of u-MPS regarding their25

evaluation and generative capabilities. Despite its recurrent nature, we show that sequential inputs to26

u-MPS can be processed in a highly parallel manner, with sequences of length n being evaluated in27

parallel time O(log n). While the difficulty of parallelizing deep recurrent neural networks (RNNs)28

has previously motivated the development of non-recurrent architectures for sequence processing29

tasks (e.g. [15, 34]), our finding shows that recurrent tensor networks represent another means of30

achieving greater parallelism.31

We further show that u-MPS models are endowed with surprising generative capabilities closely tied32

to the structure of regular expressions (regex). While standard autoregressive models are constrained33

to generate sequences in a stream-like fashion, we find that u-MPS permit many different forms34

of sampling, which are in one-to-one correspondence with regular expressions R. Our sampling35

algorithm efficiently produces unbiased samples from the probability distribution learned by the36

u-MPS, conditioned on the output sequence matching a given regular expression R.37
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For example, letting Σ∗ denote regex matching all sequences over an alphabet Σ, and p, s a given38

prefix and suffix, the choices R = Σ∗ and R = pΣ∗s respectively generate standard autoregressive-39

style sampling and fill-in-the-blank sampling, where a missing subsequence is inferred from the40

bidirectional context of p and s. Sampling with more general regex permits the generation of41

sequences with rich internal structure, a capability with particular promise for many practical tasks42

(e.g., automatic code generation). Experiments on several synthetic text datasets show strong43

generalization capabilities, with the u-MPS able to successfully infer the structure of strings of44

significantly longer length than those used for training.45

Summary of Contributions We give the first implementation of a u-MPS in probabilistic sequence46

modeling, and identify several surprising properties of this model. The absence of nonlinear activation47

functions in the u-MPS allows us to utilize a parallel evaluation method during training and inference.48

We also introduce a flexible recursive sampling algorithm for the u-MPS whose capabilities generalize49

those of essentially all sampling methods based on neural networks. We expect these contributions to50

open significant new research directions in the design of sequential generative models, with language51

modeling being a particularly promising domain.52

Related Work Notable previous applications of tensor networks in machine learning include53

compressing large neural network weights [21], proving separations in the expressivity of deep vs54

shallow networks [8], and for supervised [32, 22, 16] and unsupervised [17, 31, 6] learning tasks.55

Of particular relevance is [30], where (non-uniform) MPS were trained as generative models for56

fixed-length binary sequences using the density matrix renormalization group (DMRG) algorithm.57

This work can be seen as a continuation of [26], where u-MPS were introduced from a theoretical58

perspective as a language model, but without the parallelization, sampling, or experimental results59

given here. Our sampling algorithm is a significant generalization of the fixed-length algorithm60

introduced in [17] (which in turn follows that of [12]), and by virtue of the recurrent nature of61

u-MPS, permits the generation of discrete sequences of arbitrary length. The completely positive62

maps employed in our sampling algorithm are similar to those used within hidden quantum Markov63

models [20, 29], and likewise admit a natural interpretation in terms of concepts from quantum64

information theory.65

Models equivalent to u-MPS have been proposed as a quadratic generalization of weighted finite66

automata (WFA) [2] (see also [3] for similar methods). u-MPS can be seen as a particular case of67

linear second-order RNNs, whose connections with WFA were explored in [28]. The benefits of68

linear RNNs for parallelization and interpretability were studied in [19, 13]. A key difference from69

these prior works is our use of u-MPS for complex sampling tasks.70

Finally, there have been a number of theoretical proposals for the use of different tensor network71

architectures for modeling and understanding natural language, such as [27, 7, 14, 9]. Our work72

demonstrate that such models are not just of theoretical interest, but can have compelling practical73

benefits as well.74

2 Background75

We consider sequences over a finite alphabet Σ, with Σn denoting the set of all length-n strings, Σ∗76

the set of all strings, and ε the empty string. We use ‖v‖ to denote the 2-norm of a vector, matrix, or77

higher-order tensor v, and Tr(M) =
∑D
i=1Mii to denote the trace of a square matrix M ∈ RD×D.78

A real-valued1 tensor T ∈ Rd1×d2×···×dn is said to have shape (d1, d2, . . . , dn), and can be specified79

by an indexed collection of elements Ti1,i2,...,in ∈ R, where each index ik ∈ [dk] := {1, 2, . . . , dk}.80

Tensors with n indices are said to be nth order, and the set of nth order tensors form a vector space81

of dimension Πn
k=1dk. Matrices, vectors, and scalars are the simplest examples of tensors, of 2nd,82

1st, and 0th order, respectively. Tensor contraction is a generalization of both matrix multiplication83

and vector inner product, and multiplies two tensors along a pair of indices with equal dimension.84

If the tensors T and T ′ have respective shapes (d1, . . . , dk, . . . , dn) and (d′1, . . . , d
′
k′ , . . . , d

′
n′), for85

dk = d′k′ , then the contraction of the k and k′ indices gives a product tensor T ′′, described by86

1The restriction to real-valued tensors is natural for machine learning, but differs from the standard in
quantum physics of using complex parameters. The results given here carry over to the complex setting, and
only require the replacement of some tensors by their complex conjugate.
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Figure 1: (a-b) Two well-known cases of tensor contractions, inner products of vectors and matrix
multiplication. (c) A simple tensor network, where 2nd, 3rd, and 4th order tensors are contracted
to form a 3rd order tensor. In numerical libraries, small tensor contractions can be computed with
the einsum function, and the output X is independent of contraction order. (d) The u-MPS model,
which uses a core tensor A of shape (D, d,D) and D-dimensional vectors α and ω to define tensors
of arbitrary order. (e) The length-n normalization factor Zn defined by (3), expressed as a network of
tensor contractions. (f) The 4th order tensor E defined by two copies of the u-MPS core tensor A.
The contraction of E with a matrix on the left or right gives the left and right transfer operators of the
u-MPS, linear maps which allow the efficient computation of Zn via (4).

elements87

T ′′i1,...,ik−1,ik+1,...,in,i′1,...,i
′
k′−1

,i′
k′+1

,...,i′
n′

=

dk∑
ik=1

Ti1,...,ik,...,inT ′i′1,...,ik,...,i′n′ . (1)

The contraction operation (1) is more easily understood with a convenient graphical notation (see88

Figure 1), where individual tensors correspond to nodes in an undirected graph, and edges describe89

contractions to be performed. Contracting along an index corresponds to merging two connected90

nodes, to produce a new node whose outgoing edges are the union of those in the tensors being91

contracted. An important property of tensor contraction is its generalized associativity, so that a92

network of tensors can be contracted in any order, with the final product tensor being the same in93

every case.94

A natural example of an nth order tensor is a probability distribution over length-n sequences Σn,95

where the probabilities associated with all possible sequences form the |Σ|n separate tensor elements.96

This exponential growth in the number of elements makes dense representations of higher order97

tensors infeasible, but convenient tensor decompositions frequently permit the efficient manipulation98

of tensors with high order, even into the thousands.99

The fixed-size matrix product state [25] (MPS, also known as tensor train [24]) model parameterizes100

an nth order tensor T with shape (d1, d2, . . . , dn) as a sequential contraction of n independent tensor101

“cores” {A(j)}nj=1, which form the parameters of the model. Each A(j) has shape (Dj−1, dj , Dj),102

where D0 = Dn = 1. The dimensions Dj are referred to as bond dimensions (or ranks) of the MPS,103

and by choosing the Dj to be sufficiently large, it is possible to exactly represent any nth order tensor.104

3 Uniform MPS105

In this work we utilize the uniform MPS (u-MPS) model, a recurrent tensor network obtained by106

choosing all cores of an MPS to be identical tensorsA(j) = A with shape (D, d,D). To obtain scalar107

tensor elements, D-dimensional vectors α and ω are used as “boundary conditions” to terminate the108

initial and final bond dimensions of the network. In contrast to fixed-length MPS, the recurrent nature109
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Figure 2: Illustration of parallel and sequential evaluation of fA(s) when |s| = 4, where fA(s) =
(T4)i1,i2,i3,i4 , an element of the 4th order tensor defined by a u-MPS. After obtaining the matrix
representations A(s1), . . . ,A(sn) from s, parallel evaluation involves repeated batch multiplications
of nearest-neighbor pairs of matrices, with the boundary vectors α and ω only incorporated after the
matrix product A(s) has been obtained. Sequential evaluation instead uses iterated matrix-vector
multiplications starting with a boundary vector to contract this product. Parallel and sequential
evaluation have respective costs of O(nD3) and O(nD2), but the former can be carried out in
O(log n) parallel time. The mathematical equivalence of these evaluation strategies is a basic
example of the associativity of tensor contractions, allowing an appropriate method to be chosen
based on the size of the model, the problem at hand, and the availability of hardware acceleration.

of u-MPS allows the generation of nth order tensors Tn ∈ Rdn for any n ∈ N, which in turn allows110

u-MPS to be applied in problems involving sequential data.111

For discrete sequences over an alphabet Σ of size d, a u-MPS (paired with a bijection ϕ : Σ→ [d])112

can be used to map a sequence of arbitrary length-n to the index of an nth order tensor Tn, defining113

a scalar-valued function fA over sequences. Using A(c) = A:,ϕ(c),: ∈ RD×D to denote the matrix114

associated with the character c ∈ Σ, a u-MPS acts on a sequence s = s1s2 · · · sn ∈ Σn as115

fA(s) = αTA(s1)A(s2) · · · A(sn)ω = αTA(s)ω, (2)

where we use A(s) := A(s1)A(s2) · · · A(sn) to denote the matrix product appearing in (2). The116

function A(s) can be seen as a matrix-valued representation of arbitrary sequences s ∈ Σ∗, and is117

compositional in the sense that st is represented by the product of representations A(s) and A(t).118

While u-MPS are clearly laid out as a sequential model, the evaluation of fA(s) for |s| = n can be119

parallelized by evaluating (2) using dlog2(n)e batched matrix-matrix multiplications on all nearest-120

neighbor pairs of matrices, as shown in Figure 2. This form of parallelization requires the absence of121

nonlinear activation functions in the evaluation, and can also be carried out in linear RNNs [19].122

3.1 Born Machines123

While (2) is identical to the evaluation rule for WFA, and well-suited for regression tasks, we are124

interested in using u-MPS as probabilistic models. This requires the interpretation of fA(s) as a non-125

negative probability P (s), and deciding if a general WFA outputs negative values is undecidable [10].126

This issue can be circumvented by requiring all entries of A, α, and ω to be non-negative real127

numbers, but such models can be seen as largely equivalent to hidden Markov models [10].128

We instead follow the approach introduced in [26] (see also [17]), which is inspired by the typical129

usage of MPS in quantum mechanics. For the case of u-MPS, this Born machine approach converts a130

scalar value fA(s) to an unnormalized probability P̃ (s) := |fA(s)|2. This can be converted into a131

properly normalized distribution over sequence of fixed length n by choosing Pn(s) = P̃ (s)/Zn,132

where the normalization function Zn is given by133

Zn =
∑
s∈Σn

P̃ (s) =
∑
i1∈[d]

∑
i2∈[d]

· · ·
∑
in∈[d]

|(Tn)i1,i2,...,id |
2

= ‖Tn‖2 , (3)

and with Tn the nth order tensor defined by the u-MPS. This quadratic evaluation rule is equivalent134

to the Born rule of quantum mechanics [5], which gives a formal interpretation of such models as135

wavefunctions over n quantum spins. However this probabilistic correspondence is richer in the136

case of u-MPS, since distributions over sequences of different lengths can be easily defined. The137

distribution P∗(s) = P̃ (s)/Z∗ in particular gives a probability distribution over strings of arbitrary138

length, where the normalization factor Z∗ is identical to that given in (3), but with the sum over Σn139
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Table 1: Dictionary giving the correspondence between regular expressions (regex) and generalized
transfer operators associated with a u-MPS (note the reversal of order in E`R1R2

). The positive
semidefinite matrix Q∗r is defined in terms of an infinite sum, but can also be computed as the solution
to the linear equation (I − ErS)Q∗r = Qr (similarly for Q∗` ).

REGEX R = c R1R2 R1|R2 S∗

Er
R(Qr) = AcQrAT

c Er
R1

(Er
R2

(Qr)) Er
R1

(Qr) + Er
R2

(Qr)
∑∞

n=0(E
r
S)
◦n(Qr) =: Q∗r

E`
R(Q`) = AT

c Q`Ac E`
R2

(E`
R1

(Q`)) E`
R1

(Q`) + E`
R2

(Q`)
∑∞

n=0(E
`
S)
◦n(Q`) =: Q∗`

replaced by one over Σ∗ (assuming this sum converges). We show in Section 4 how normalization140

functions of this form can be generalized further to incorporate sums over all strings matching an141

arbitrary regular expression R.142

Normalization functions like Zn occur frequently in many-body physics, and can be efficiently143

computed via a simple reordering of tensor contractions. By (3), Zn equals the 2-norm of Tn, which144

is represented diagrammatically as Figure 1e. The naive method of evaluating Zn involves first145

generating all elements of Tn via contraction along the horizontal D-dimensional indices of the146

u-MPS, but the generalized associativity of tensor contraction lets us evaluate this expression more147

efficiently.148

By first contracting two copies of A along a vertical d-dimensional index (see (1)f) we obtain149

a 4th order tensor E , which can be interpreted as a linear map on a space of matrices in two150

main ways, by contracting either its left or its right indices with an input. These linear maps,151

known as transfer operators, are examples of completely positive (CP) maps, a generalization of152

stochastic matrices which find frequent application in the context of quantum information theory (see153

supplementary material for more details). These maps admit the Kraus representations Er(Qr) =154 ∑
c∈ΣA(c)QrA(c)T and E`(Q`) =

∑
c∈ΣA(c)TQ`A(c), which are connected by the adjoint155

identity Tr(Q`Er(Qr)) = Tr(E`(Q`)Qr).2156

The normalization Zn can be equivalently computed in terms of left or right transfer operators, with157

the latter option yielding158

Zn = αTEr(Er(· · · Er(ωωT )) · · · )α = Tr (Qα` (Er)◦n(Qωr )) , (4)

where Qα` = ααT and Qωr = ωωT are rank-1 matrices constituting boundary conditions for the159

normalization term. We use (Er)◦n to denote the composition of Er with itself n times, and define160

(Er)◦0 to be the identity map acting on square matrices. For an MPS of bond dimension D over an161

alphabet of size d, a single transfer operator application requires time O(dD3), giving a sequential162

runtime of O(ndD3) for computing Zn. By representing transfer operators as D2 ×D2 matrices,163

this computation can be parallelized in a similar manner as described in Section 3, but at the price of164

increasing the total computational cost to O(nD6).165

4 Regular Expressions and u-MPS166

While transfer operators as defined above are standard in quantum many-body physics, we now show167

how this transfer operator calculus can be richly generalized in the setting of sequential data. We168

work with regular expressions (regex) R over an alphabet Σ of size d, which can be recursively169

defined in terms of: (a) Single characters c ∈ Σ, (b) Concatenations of regex R = R1R2, (c) Unions170

of regex R = R1|R2, and (d) Kleene closures of regex R = S∗. We use Σ to denote the regex which171

matches a single character, and Σn to denote the concatenation of Σ with itself n times.172

Any regex R defines a set Lang(R) ⊂ Σ∗, the language of strings matching the pattern specified by173

R. While Lang(R) is uniquely determined by R, it is typically possible to choose multiple regex174

which define the same language. We assume in the following that we have chosen an unambiguous175

regexR, so that each string s ∈ Lang(R) matchesR exactly once. This involves no loss of generality,176

since any ambiguous regex can be replaced by an unambiguous regex defining the same language [4].177

In such cases, we will use R to also represent the subset Lang(R).178

2In general, CP maps are linear operators F acting on square matrices by the rule F(Q) =
∑K

i=1 AiQAT
i .

CP maps are guaranteed to send positive semidefinite (PSD) to other PSD matrices, allowing us to assume in the
following that all Q` and Qr are PSD.
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Algorithm 1 Regex sampling algorithm for u-MPS
function SAMPLE(R,Q`, Qr)

if R = c then // Sample a character c ∈ Σ
return c

else if R = R1R2 then // Sample a sequence of expressions
s1 = SAMPLE(R1, Q`, ErR2

(Qr))

s2 = SAMPLE(R2, E`s1(Q`), Qr)
return s1s2

else if R = R1|R2 then // Sample a union of expressions
Sample random i ∈ {1, 2}, with probabilities p(i) = ZRi

(Q`, Qr) / ZR1|R2
(Q`, Qr)

si = SAMPLE(ei, Q`, Qr)
return si

else if R = S∗ then // Sample regex S zero or more times
Sample random i ∈ {HALT,GO}, with probabilities
p(HALT) = Tr(Q`Qr)/ZS∗(Q`, Qr) and p(GO) = 1− p(HALT)

if i = HALT then // Return empty string
return ε

else // Sample one or more chars
return SAMPLE(SS∗, Q`, Qr)

To each regexR, we associate a pair of generalized transfer operators ErR and E`R, formed by summing179

over all strings in the language R, whose action on matrices is180

ErR(Qr) =
∑
s∈R
A(s)QrA(s)T , E`R(Q`) =

∑
s∈R
A(s)TQ`A(s). (5)

While the naive sum appearing in (5) can have infinitely many terms, the action of such CP maps can181

still be efficiently and exactly computed in terms of the recursive definition of the regex itself. Table 1182

gives the correspondence between the four primitive regex operations introduced above and the183

corresponding operations on CP maps. Proof of the consistency between these recursive operations184

and (5) for unambiguous regex is given in the supplementary material.185

The Kleene closure ErS in Table 1 involves an infinite summation, which is guaranteed to converge186

whenever the spectral norm of ErS is bounded as ρ(ErS) < 1. In this case, Q∗r can be approximated187

using a finite number of summands, or alternately computed exactly as the solution to the linear188

equation (I − ErS)Q∗r = Qr (see [3]).189

Among other things, transfer operators can be interpreted as normalization functions for u-MPS190

sampling distributions. By defining ZR(Q`, Qr) := Tr(Q`ErR(Qr)), we see that the normalization191

functions Zn and Z∗ defined above are special cases of this prescription, with boundary matrices192

Q` = ααT , Qr = ωωT and respective regex R = Σn and R = Σ∗. When incorporated in a193

task-specific loss function (e.g. negative log likelihood), the implementation of ZR in an automatic194

differentiation library allows this quantity to yield gradients with respect to the model parameters A,195

α, and ω.196

5 Sampling197

The exact correspondence developed above between syntactic operations on regex and linear-algebraic198

operations on CP maps endows u-MPS models with rich sampling capabilities unseen in typical199

generative models. In particular, the function SAMPLE defined recursively in Algorithm 1 gives a200

means of converting any regex R into an efficient sampling procedure, whose random outputs are201

(for unambiguous R) unbiased samples from the conditional u-MPS distribution associated with the202

subset R ⊂ Σ∗. This is formalized in203

Theorem 1. Consider a u-MPS model with core tensor A and boundary vectors α and ω, along with204

an unambiguous regex R whose right transfer operator ErR converges. Let P∗ indicate the probability205

distribution over arbitrary strings defined by the u-MPS, so that Σs∈Σ∗P∗(s) = 1. Then calling206

SAMPLE(R,ααT , ωωT ) generates a random string s ∈ Σ∗ from the conditional u-MPS distribution207

P∗(s|s ∈ R) = P∗(s)/P∗(R), where P∗(R) :=
∑
s′∈R P∗(s

′).208
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We prove Theorem 1 in the supplementary material, which also discusses sampling with ambiguous209

regex R. For this latter case, Algorithm 1 works identically, but returns samples from a distribution210

where strings s are weighted based on the number of times s matches R.211

Although Algorithm 1 is written in a recursive manner, it is useful to consider the simple example212

R = Σn, a concatenation of the single-character regex Σ with itself n times, to understand the overall213

control flow. In this case, Algorithm 1 first attempts to sample the initial character in the string via a214

recursive call to SAMPLE(Σ, ααT , ErΣn−1(ωωT )). This requires n− 1 applications of the transfer215

operator Er to the initial right boundary matrix, and yields one new character before continuing to216

the right and repeating this process again.217

As is common with recursive algorithms, caching intermediate information permits the naive cost of218

(n − 1) + (n − 2) + · · · + 1 = O(n2) transfer operator applications to be reduced to O(n). This219

cached version is equivalent to a simple iterative algorithm, where a sequence of right boundary220

matrices is first generated and saved during a right-to-left sweep, before a left-to-right sweep is221

used to sample text and propagate conditional information using the left boundary matrices. Using222

this idea, we show in the supplementary material that for typical regex R, Algorithm 1 can be run223

with average-case runtime O(LdD3) and worst-case memory usage O(LD2), for L the number of224

characters in R, d the size of Σ, and D the bond dimension of the u-MPS.225

6 Experiments226

To assess the performance of u-MPS in probabilistic sequence modeling and grammatical inference,227

we carry out experiments on several synthetic text datasets consisting of five Tomita grammars of228

binary strings and a context-free “Motzkin” grammar over the alphabet ΣM = { ( , & , ) } [33, 1].229

The latter consists of all strings whose parentheses are properly balanced, with no constraints placed230

on the & characters.231

In each case we train the u-MPS on strings of a restricted length from the grammar and then sample232

new strings of unseen lengths from the trained u-MPS, with the model assessed on the percentage of233

sampled strings which match the grammar. The sampling comes in two forms, either fixed length-n234

sampling (corresponding to R = Σn), or character completion sampling, where a single character235

in a reference string is masked and the prefix and suffix p and s are used to guess it (corresponding236

to R = pΣs). While more general sampling experiments can easily be imagined, we have chosen237

these tasks because they allow for direct comparisons with unidirectional and bidirectional LSTM238

baselines.239

While unbiased fixed-length sampling is easy for u-MPS via Algorithm 1, we found that the uni-240

directional LSTM baseline required an additional positional encoding in its inputs to avoid rapid241

degeneration in the output text when sampling past the longest length seen in training. At sampling242

time, we vary the length scale associated with this encoding based on the desired sampling length, so243

that the final step of sampling is always associated with the same positional encoding vector.244

We train the u-MPS and LSTM using gradient descent on a negative log likelihood (NLL) loss with245

the Adam [18] optimizer. For each experiment we use models of D = 20 and D = 50 hidden units in246

five independent trials each, with the final validation loss used to select the best model for generating247

samples. We use a piecewise constant learning rate between 10−2 and 10−5, and early stopping to248

choose the end of training.249

In the Tomita experiments (Table 2), we see u-MPS giving impressive performance, in many cases250

achieving perfect accuracy in sampling strings of unseen sizes within the language. This is true not251

only in the simpler grammars Tomita 3 and 4, but also in the more difficult Tomita 5, where valid252

strings satisfy the nonlocal constraint of containing an even number of 0’s and of 1’s. Compared to253

the LSTM, the correctness of the u-MPS’s generated text is robust against changes in the sequence254

length, suggesting that the model is learning the exact grammar of the language. Given the close255

connection between u-MPS and regular languages this positive result is not entirely unexpected, but256

the fact that u-MPS can learn such structure from an unlabeled dataset without any further input is257

surprising.258

Similar results are seen with the context-free Motzkin language (Table 3), where a fixed-length259

sampling task similar to the Tomita experiment is paired with a character completion task. We must260

use two separate baselines in this case, since each task requires a different type of RNN architecture261

7



Table 2: Experiments on Tomita grammars 3-7 (see supplementary material for the definitions of
these grammars), where all strings in the training data have lengths between 1 and 15. The trained
models are used to sample strings of lengths 16 and 30, with the percentage of grammatically correct
samples reported. The u-MPS consistently gives better generalization across different lengths, except
for Tomita 6 which neither model is able to learn. Most of the Tomita grammars are too small to train
with more than 1,000 strings, but Tomita 5 and 6 permit experiments with larger datasets.

TOMITA # SAMP. LEN. 16 SAMP. LEN. 30
(Ntrain) U-MPS LSTM U-MPS LSTM

3 (1K) 100.0 90.2 100.0 85.6
4 (1K) 99.9 85.4 99.5 64.7
5 (1K) 50.5 49.0 49.1 50.2
5 (10K) 100.0 49.9 99.9 52.8
6 (1K) 32.1 33.1 33.9 34.2
6 (10K) 35.9 33.1 33.1 34.4
7 (1K) 99.3 89.2 89.4 29.1

Table 3: Experiments on the context-free Motzkin grammar, where the training set is fixed to contain
only strings of length 15. We explore both fixed-length sampling (Samp) and character completion
(Comp) tasks, where the model either samples a string from scratch, or predicts a missing character
in a reference string given access to the character’s prefix and suffix. In each case, the same trained
u-MPS is used to give both sampling and character completion data. The bidirectional LSTM
outperforms the u-MPS on shorter strings in the character completion task, but quickly degrades in
accuracy as the length of the reference strings are increased.

TASK SAMP. LEN. 1 SAMP. LEN. 16 SAMP. LEN. 50
(Ntrain) U-MPS LSTM U-MPS LSTM U-MPS LSTM

SAMP (1K) 89.4 41.7 74.4 41.2 32.5 0.0
COMP (1K) 89.4 99.9 69.6 99.5 58.8 61.3
SAMP (10K) 99.3 35.7 99.8 60.4 91.6 5.4
COMP (10K) 99.3 100.0 99.8 100.0 92.4 69.1

(unidirectional or bidirectional) to perform the sampling. By contrast, a trained u-MPS model can be262

employed in both of these settings without any task-specific adaptation, as well as in more general263

sentence completion tasks involving connected or disjoint regions of missing text (tasks which cannot264

be easily handled by common RNN models). The u-MPS does substantially better in reproducing the265

structure of Motzkin strings than the unidirectional LSTM, and outperforms the bidirectional LSTM266

when predictions are required for longer strings.267

7 Conclusion268

We utilize a u-MPS model for probabilistic modeling of sequence data, which we show is endowed269

with both significant parallelism and rich generative capabilities. Our sampling algorithm relies270

on a close connection between regular languages and generalized transfer operators of u-MPS, a271

connection we expect to extend nicely to other language classes and tensor network models. Of272

particular interest are tree tensor networks utilizing weight-sharing, which should be similarly capable273

of sampling from conditional distributions associated with context-free languages. Given the greater274

relevance of context-free grammars for natural language processing, we expect this direction to hold275

the promise of producing novel language models which can seamlessly integrate domain knowledge276

from linguistics to more efficiently learn and reproduce the structure of natural language.277

A natural next step is scaling up u-MPS for real-world sequence modeling tasks, notably language278

modeling. Some obstacle to this process are the O(D3) cost of certain u-MPS operations (notably,279

computing normalization functions ZR), along with the absence of well-established best-practices280

for training large tensor networks with gradient descent. We expect these issues to be circumvented281

by further directed research into the practical application of tensor networks in machine learning.282

Considering the unexpected benefits of u-MPS for parallelism and structured text generation we283

have demonstrated here, we expect recurrent tensor network architectures to have a bright future in284

machine learning.285
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