Tensor networks are a powerful modeling framework developed for computational many-body physics, which have only recently been applied within machine learning. In this work we utilize a uniform matrix product state (u-MPS) model for probabilistic modeling of sequence data. We first show that u-MPS enable sequence-level parallelism, with length-\(n\) sequences able to be evaluated in depth \(O(\log n)\). We then introduce a novel generative algorithm giving trained u-MPS the ability to efficiently sample from a wide variety of conditional distributions, each one defined by a regular expression. Special cases of this algorithm correspond to autoregressive and fill-in-the-blank sampling, but more complex regular expressions permit the generation of richly structured text in a manner that has no direct analogue in current generative models. Experiments on synthetic text data find u-MPS outperforming LSTM baselines in several sampling tasks, and demonstrate strong generalization in the presence of limited data.

1 Introduction

Tensor network models have long represented the state of the art in modeling complex quantum systems \([35, 11, 23]\), but have only recently been utilized as models for machine learning \([21, 8, 52, 22, 17, 31, 6]\). In contrast to neural networks, tensor networks forgo the use of nonlinear activation functions, relying instead on multiplicative interactions to capture complex correlations within data. This gives tensor networks a convenient mathematical structure suitable for proving powerful theoretical results, such as the separation in expressivity between almost all deep tensor networks and their shallow counterparts \([8]\). However, these distinctive properties have yet to be leveraged for attaining equally impressive operational capabilities, which would give support for the wider adoption of tensor network models in real-world machine learning tasks.

In this work we apply a recurrent tensor network, the uniform matrix product state (u-MPS), to the task of probabilistic sequence modeling, and identify several novel abilities of u-MPS regarding their evaluation and generative capabilities. Despite its recurrent nature, we show that sequential inputs to u-MPS can be processed in a highly parallel manner, with sequences of length \(n\) being evaluated in parallel time \(O(\log n)\). While the difficulty of parallelizing deep recurrent neural networks (RNNs) has previously motivated the development of non-recurrent architectures for sequence processing tasks (e.g. \([13, 34]\)), our finding shows that recurrent tensor networks represent another means of achieving greater parallelism.

We further show that u-MPS models are endowed with surprising generative capabilities closely tied to the structure of regular expressions (regex). While standard autoregressive models are constrained to generate sequences in a stream-like fashion, we find that u-MPS permit many different forms of sampling, which are in one-to-one correspondence with regular expressions \(R\). Our sampling algorithm efficiently produces unbiased samples from the probability distribution learned by the u-MPS, conditioned on the output sequence matching a given regular expression \(R\).
For example, letting Σ^* denote regex matching all sequences over an alphabet Σ, and p, s a given
prefix and suffix, the choices $R = \Sigma^*$ and $R = p\Sigma^* s$ respectively generate standard autoregressive-
style sampling and fill-in-the-blank sampling, where a missing subsequence is inferred from the
bidirectional context of p and s. Sampling with more general regex permits the generation of
sequences with rich internal structure, a capability with particular promise for many practical tasks
(e.g., automatic code generation). Experiments on several synthetic text datasets show strong
generalization capabilities, with the u-MPS able to successfully infer the structure of strings of
significantly longer length than those used for training.

Summary of Contributions We give the first implementation of a u-MPS in probabilistic sequence
modeling, and identify several surprising properties of this model. The absence of nonlinear activation
functions in the u-MPS allows us to utilize a parallel evaluation method during training and inference.
We also introduce a flexible recursive sampling algorithm for the u-MPS whose capabilities generalize
those of essentially all sampling methods based on neural networks. We expect these contributions to
open significant new research directions in the design of sequential generative models, with language
modeling being a particularly promising domain.

Related Work Notable previous applications of tensor networks in machine learning include
compressing large neural network weights [21], proving separations in the expressivity of deep vs
shallow networks [8], and for supervised [22] [23] [16] and unsupervised [17] [31] [3] learning tasks.
Of particular relevance is [30], where (non-uniform) MPS were trained as generative models for
fixed-length binary sequences using the density matrix renormalization group (DMRG) algorithm.
This work can be seen as a continuation of [26], where u-MPS were introduced from a theoretical
perspective as a language model, but without the parallelization, sampling, or experimental results
given here. Our sampling algorithm is a significant generalization of the fixed-length algorithm
introduced in [17] (which in turn follows that of [12]), and by virtue of the recurrent nature of
u-MPS, permits the generation of discrete sequences of arbitrary length. The completely positive
maps employed in our sampling algorithm are similar to those used within hidden quantum Markov
models [20] [29], and likewise admit a natural interpretation in terms of concepts from quantum
information theory.

Models equivalent to u-MPS have been proposed as a quadratic generalization of weighted finite
automata (WFA) [2] (see also [3] for similar methods). u-MPS can be seen as a particular case of
linear second-order RNNs, whose connections with WFA were explored in [28]. The benefits of
linear RNNs for parallelization and interpretability were studied in [19] [13]. A key difference from
these prior works is our use of u-MPS for complex sampling tasks.

Finally, there have been a number of theoretical proposals for the use of different tensor network
architectures for modeling and understanding natural language, such as [27] [7] [14] [9]. Our work
demonstrate that such models are not just of theoretical interest, but can have compelling practical
benefits as well.

2 Background

We consider sequences over a finite alphabet Σ, with Σ^n denoting the set of all length-n strings, Σ^*
the set of all strings, and ε the empty string. We use $\|v\|$ to denote the 2-norm of a vector, matrix, or
higher-order tensor v, and $\text{Tr}(M) = \sum_{i=1}^{D} M_{ii}$ to denote the trace of a square matrix $M \in \mathbb{R}^{D \times D}$.

A real-valued tensor $T \in \mathbb{R}^{d_1 \times d_2 \times \cdots \times d_n}$ is said to have shape (d_1, d_2, \ldots, d_n), and can be specified
by an indexed collection of elements $T_{i_1,i_2,\ldots,i_n} \in \mathbb{R}$, where each index $i_k \in [d_k] := \{1, 2, \ldots, d_k\}$.

Tensors with n indices are said to be nth order, and the set of nth order tensors form a vector space
of dimension $\prod_{k=1}^{n} d_k$. Matrices, vectors, and scalars are the simplest examples of tensors, of 2nd,
1st, and 0th order, respectively. Tensor contraction is a generalization of both matrix multiplication
and vector inner product, and multiplies two tensors along a pair of indices with equal dimension.
If the tensors T and T' have respective shapes $(d_1, \ldots, d_k, \ldots, d_n)$ and $(d'_1, \ldots, d'_k, \ldots, d'_n)$, for
$d_k = d'_k$, then the contraction of the k and k' indices gives a product tensor T^{\top}, described by

\footnote{The restriction to real-valued tensors is natural for machine learning, but differs from the standard in
quantum physics of using complex parameters. The results given here carry over to the complex setting, and
only require the replacement of some tensors by their complex conjugate.}
Figure 1: (a-b) Two well-known cases of tensor contractions, inner products of vectors and matrix multiplication. (c) A simple tensor network, where 2nd, 3rd, and 4th order tensors are contracted to form a 3rd order tensor. In numerical libraries, small tensor contractions can be computed with the einsum function, and the output X is independent of contraction order. (d) The u-MPS model, which uses a core tensor A of shape (D,d,D) and D-dimensional vectors α and ω to define tensors of arbitrary order. (e) The length-n normalization factor Z_n defined by (3), expressed as a network of tensor contractions. (f) The 4th order tensor E defined by two copies of the u-MPS core tensor A. The contraction of E with a matrix on the left or right gives the left and right transfer operators of the u-MPS, linear maps which allow the efficient computation of Z_n via (4).

The contraction operation (1) is more easily understood with a convenient graphical notation (see Figure 1), where individual tensors correspond to nodes in an undirected graph, and edges describe contractions to be performed. Contracting along an index corresponds to merging two connected nodes, to produce a new node whose outgoing edges are the union of those in the tensors being contracted. An important property of tensor contraction is its generalized associativity, so that a network of tensors can be contracted in any order, with the final product tensor being the same in every case.

A natural example of an nth order tensor is a probability distribution over length-n sequences Σ^n, where the probabilities associated with all possible sequences form the $|\Sigma|^n$ separate tensor elements. This exponential growth in the number of elements makes dense representations of higher order tensors infeasible, but convenient tensor decompositions frequently permit the efficient manipulation of tensors with high order, even into the thousands.

3 Uniform MPS

In this work we utilize the uniform MPS (u-MPS) model, a recurrent tensor network obtained by choosing all cores of an MPS to be identical tensors $A^{(j)} = A$ with shape (D,d,D). To obtain scalar tensor elements, D-dimensional vectors α and ω are used as “boundary conditions” to terminate the initial and final bond dimensions of the network. In contrast to fixed-length MPS, the recurrent nature
We instead follow the approach introduced in [26] (see also [17]), which is inspired by the typical usage of MPS in quantum mechanics. For the case of u-MPS, this Born machine approach converts a scalar value \(f_A(s) \) to an unnormalized probability \(\tilde{P}(s) := |f_A(s)|^2 \). This can be converted into a properly normalized distribution over sequence of fixed length \(n \) by choosing \(P_n(s) = \tilde{P}(s)/Z_n \), where the normalization function \(Z_n \) is given by

\[
Z_n = \sum_{s \in \Sigma^n} \tilde{P}(s) = \sum_{i_1 \in [d]} \sum_{i_2 \in [d]} \cdots \sum_{i_n \in [d]} |(T_n)_{i_1,i_2,\ldots,i_n}|^2 = \|T_n\|^2,
\]

and with \(T_n \) the \(n \)th order tensor defined by the u-MPS. This quadratic evaluation rule is equivalent to the Born rule of quantum mechanics [5], which gives a formal interpretation of such models as wavefunctions over \(n \) quantum spins. However this probabilistic correspondence is richer in the case of u-MPS, since distributions over sequences of different lengths can be easily defined. The distribution \(P_n(s) = \tilde{P}(s)/Z_n \) in particular gives a probability distribution over strings of arbitrary length, where the normalization factor \(Z_n \) is identical to that given in [5], but with the sum over \(\Sigma^n \)
While transfer operators as defined above are standard in quantum many-body physics, we now show which define the same language. We assume in the following that we have chosen an unambiguous normalization term. We use Z_n to denote the identity map acting on square matrices. For an MPS of bond dimension D over an alphabet of size d, a single transfer operator application requires time $O(d^{D^2})$, giving a sequential runtime of $O(ndD^3)$ for computing Z_n. By representing transfer operators as $D^2 \times D^2$ matrices, this computation can be parallelized in a similar manner as described in Section 3, but at the price of increasing the total computational cost to $O(nD^6)$.

4 Regular Expressions and u-MPS

While transfer operators as defined above are standard in quantum many-body physics, we now show how this transfer operator calculus can be richly generalized in the setting of sequential data. We work with regular expressions (regex) R over an alphabet Σ of size d, which can be recursively defined in terms of: (a) Single characters $c \in \Sigma$, (b) Concatenations of regex $R = R_1R_2$, (c) Unions of regex $R = R_1|R_2$, and (d) Kleene closures of regex $R = S^*$. We use Σ to denote the regex which matches a single character, and Σ^n to denote the concatenation of Σ with itself n times.

Any regex R defines a set $\text{Lang}(R) \subseteq \Sigma^*$, the language of strings matching the pattern specified by R. While $\text{Lang}(R)$ is uniquely determined by R, it is typically possible to choose multiple regex which define the same language. We assume in the following that we have chosen an unambiguous regex R, so that each string $s \in \text{Lang}(R)$ matches R exactly once. This involves no loss of generality, since any ambiguous regex can be replaced by an unambiguous regex defining the same language [4].

In such cases, we will use R to also represent the subset $\text{Lang}(R)$.

In general, CP maps are linear operators F acting on square matrices by the rule $F(Q) = \sum_{i=1}^{K} A_i Q A_i^T$. CP maps are guaranteed to send positive semidefinite (PSD) to other PSD matrices, allowing us to assume in the following that all Q_i and Q_r are PSD.
Algorithm 1 Regex sampling algorithm for u-MPS

```
function SAMPLE(R, Q, Qr)
    if R = ε then // Sample a character c ∈ Σ
        return c
    else if R = R1R2 then // Sample a sequence of expressions
        s1 = SAMPLE(R1, Q, 𝔇R2(Qr))
        s2 = SAMPLE(R2, mR(Q), Qr)
        return s1, s2
    else if R = R1|R2 then // Sample a union of expressions
        Sample random i ∈ {1, 2}, with probabilities p(i) = ZR1(Q, Qr) / ZR1|R2(Q, Qr)
        s1 = SAMPLE(Ri, Q, Qr)
        return s1
    else if R = S* then // Sample regex S zero or more times
        Sample random i ∈ {HALT, GO}, with probabilities
        p(HALT) = Tr(Q, Qr) / ZS·(Q, Qr) and p(GO) = 1 − p(HALT)
        if i = HALT then // Return empty string
            return ε
        else // Sample one or more chars
            return SAMPLE(S, Q, Qr)
```

To each regex R, we associate a pair of generalized transfer operators \mathcal{E}_R^+ and \mathcal{E}_R^- formed by summing over all strings in the language R, whose action on matrices is

$$
\mathcal{E}_R^+(Q_r) = \sum_{s \in R} A(s)Q_rA(s)^T, \quad \mathcal{E}_R^-(Q) = \sum_{s \in R} A(s)^TQ_rA(s). \quad (5)
$$

While the naive sum appearing in (5) can have infinitely many terms, the action of such CP maps can still be efficiently and exactly computed in terms of the recursive definition of the regex itself. Table 1 gives the correspondence between the four primitive regex operations introduced above and the corresponding operations on CP maps. Proof of the consistency between these recursive operations and (5) for unambiguous regex is given in the supplementary material.

The Kleene closure \mathcal{E}_R^* in Table 1 involves an infinite summation, which is guaranteed to converge whenever the spectral norm of \mathcal{E}_R^+ is bounded as $p(\mathcal{E}_R^+) < 1$. In this case, Q_r^* can be approximated using a finite number of summands, or alternately computed exactly as the solution to the linear equation $(I - \mathcal{E}_R^+)Q_r^* = Q_r$ (see [5]).

Among other things, transfer operators can be interpreted as normalization functions for u-MPS sampling distributions. By defining $Z_R(Q, Q_r) := Tr(Q_r^c\mathcal{E}_R^+(Q_r))$, we see that the normalization functions Z_R and Z_ϵ defined above are special cases of this prescription, with boundary matrices $Q_r = \alpha \alpha^T, Q_\epsilon = \omega \omega^T$ and respective regex $R = \Sigma^n$ and $R = \Sigma^*$. When incorporated in a task-specific loss function (e.g. negative log likelihood), the implementation of Z_R in an automatic differentiation library allows this quantity to yield gradients with respect to the model parameters A, α, and ω.

5 Sampling

The exact correspondence developed above between syntactic operations on regex and linear-algebraic operations on CP maps endows u-MPS models with rich sampling capabilities unseen in typical generative models. In particular, the function SAMPLE defined recursively in Algorithm 1 gives a means of converting any regex R into an efficient sampling procedure, whose random outputs are unbiased samples from the conditional u-MPS distribution associated with the subset $R \subset \Sigma^*$. This is formalized in

Theorem 1. Consider a u-MPS model with core tensor A and boundary vectors α and ω, along with an unambiguous regex R whose transfer operator \mathcal{E}_R^+ converges. Let P_s indicate the probability distribution over arbitrary strings defined by the u-MPS, so that $\Sigma_{s \in \Sigma^*} P_s(s) = 1$. Then calling $\text{SAMPLE}(R, \alpha \alpha^T, \omega \omega^T)$ generates a random string $s \in \Sigma^*$ from the conditional u-MPS distribution $P_s(s) = P_s(s) / P_s(R)$, where $P_s(R) := \Sigma_{s' \in R} P_s(s')$.
We prove Theorem 1 in the supplementary material, which also discusses sampling with ambiguous regex R. For this latter case, Algorithm 1 works identically, but returns samples from a distribution where strings s are weighted based on the number of times s matches R.

Although Algorithm 1 is written in a recursive manner, it is useful to consider the simple example $R = \Sigma^n$, a concatenation of the single-character regex Σ with itself n times, to understand the overall control flow. In this case, Algorithm 1 first attempts to sample the initial character in the string via a recursive call to $\text{SAMPLE}(\Sigma, \alpha^T, \Sigma_{\Sigma-1}^{\omega T})$. This requires $n-1$ applications of the transfer operator E_n to the initial right boundary matrix, and yields one new character before continuing to the right and repeating this process again.

As is common with recursive algorithms, caching intermediate information permits the naive cost of $(n-1) + (n-2) + \cdots + 1 = O(n^2)$ transfer operator applications to be reduced to $O(n)$. This cached version is equivalent to a simple iterative algorithm, where a sequence of right boundary matrices is first generated and saved during a right-to-left sweep, before a left-to-right sweep is used to sample text and propagate conditional information using the left boundary matrices. Using this idea, we show in the supplementary material that for typical regex R, Algorithm 1 can be run with average-case runtime $O(LdD^3)$ and worst-case memory usage $O(LD^2)$, for L the number of characters in R, d the size of Σ, and D the bond dimension of the u-MPS.

6 Experiments

To assess the performance of u-MPS in probabilistic sequence modeling and grammatical inference, we carry out experiments on several synthetic text datasets consisting of five Tomita grammars of binary strings and a context-free “Motzkin” grammar over the alphabet $\Sigma_M = \{\; , \, , \, , \, \}$. The latter consists of all strings whose parentheses are properly balanced, with no constraints placed on the $\&$ characters.

In each case we train the u-MPS on strings of a restricted length from the grammar and then sample new strings of unseen lengths from the trained u-MPS, with the model assessed on the percentage of sampled strings which match the grammar. The sampling comes in two forms, either fixed length-n sampling (corresponding to $R = \Sigma^n$), or character completion sampling, where a single character in a reference string is masked and the prefix and suffix p and s are used to guess it (corresponding to $R = p\Sigma s$). While more general sampling experiments can easily be imagined, we have chosen these tasks because they allow for direct comparisons with unidirectional and bidirectional LSTM baselines.

While unbiased fixed-length sampling is easy for u-MPS via Algorithm 1, we found that the unidirectional LSTM baseline required an additional positional encoding in its inputs to avoid rapid degeneration in the output text when sampling past the longest length seen in training. At sampling time, we vary the length scale associated with this encoding based on the desired sampling length, so that the final step of sampling is always associated with the same positional encoding vector.

We train the u-MPS and LSTM using gradient descent on a negative log likelihood (NLL) loss with the Adam optimizer. For each experiment we use models of $D = 20$ and $D = 50$ hidden units in five independent trials each, with the final validation loss used to select the best model for generating samples. We use a piecewise constant learning rate between 10^{-2} and 10^{-5}, and early stopping to choose the end of training.

In the Tomita experiments (Table 2), we see u-MPS giving impressive performance, in many cases achieving perfect accuracy in sampling strings of unseen sizes within the language. This is true not only in the simpler grammars Tomita 3 and 4, but also in the more difficult Tomita 5, where valid strings satisfy the nonlocal constraint of containing an even number of 0’s and of 1’s. Compared to the LSTM, the correctness of the u-MPS’$'$s generated text is robust against changes in the sequence length, suggesting that the model is learning the exact grammar of the language. Given the close connection between u-MPS and regular languages this positive result is not entirely unexpected, but the fact that u-MPS can learn such structure from an unlabeled dataset without any further input is surprising.

Similar results are seen with the context-free Motzkin language (Table 3), where a fixed-length sampling task similar to the Tomita experiment is paired with a character completion task. We must use two separate baselines in this case, since each task requires a different type of RNN architecture.
Table 2: Experiments on Tomita grammars 3-7 (see supplementary material for the definitions of these grammars), where all strings in the training data have lengths between 1 and 15. The trained models are used to sample strings of lengths 16 and 30, with the percentage of grammatically correct samples reported. The u-MPS consistently gives better generalization across different lengths, except for Tomita 6 which neither model is able to learn. Most of the Tomita grammars are too small to train with more than 1,000 strings, but Tomita 5 and 6 permit experiments with larger datasets.

<table>
<thead>
<tr>
<th>TOMITA #</th>
<th>SAMP. LEN. 16</th>
<th>SAMP. LEN. 30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>u-MPS</td>
<td>LSTM</td>
</tr>
<tr>
<td>3 (1K)</td>
<td>100.0</td>
<td>90.2</td>
</tr>
<tr>
<td>4 (1K)</td>
<td>99.9</td>
<td>85.4</td>
</tr>
<tr>
<td>5 (1K)</td>
<td>50.5</td>
<td>49.0</td>
</tr>
<tr>
<td>5 (10K)</td>
<td>100.0</td>
<td>49.9</td>
</tr>
<tr>
<td>6 (1K)</td>
<td>32.1</td>
<td>33.1</td>
</tr>
<tr>
<td>6 (10K)</td>
<td>35.9</td>
<td>33.1</td>
</tr>
<tr>
<td>7 (1K)</td>
<td>99.3</td>
<td>89.2</td>
</tr>
</tbody>
</table>

Table 3: Experiments on the context-free Motzkin grammar, where the training set is fixed to contain only strings of length 15. We explore both fixed-length sampling (Samp) and character completion (Comp) tasks, where the model either samples a string from scratch, or predicts a missing character in a reference string given access to the character’s prefix and suffix. In each case, the same trained u-MPS is used to give both sampling and character completion data. The bidirectional LSTM outperforms the u-MPS on shorter strings in the character completion task, but quickly degrades in accuracy as the length of the reference strings are increased.

<table>
<thead>
<tr>
<th>TASK (N_train)</th>
<th>SAMP. LEN. 1</th>
<th>SAMP. LEN. 16</th>
<th>SAMP. LEN. 50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>u-MPS</td>
<td>LSTM</td>
<td>u-MPS</td>
</tr>
<tr>
<td>Samp (1K)</td>
<td>89.4</td>
<td>41.7</td>
<td>74.4</td>
</tr>
<tr>
<td>Comp (1K)</td>
<td>89.4</td>
<td>99.9</td>
<td>69.6</td>
</tr>
<tr>
<td>Samp (10K)</td>
<td>99.3</td>
<td>35.7</td>
<td>99.8</td>
</tr>
<tr>
<td>Comp (10K)</td>
<td>99.3</td>
<td>100.0</td>
<td>99.8</td>
</tr>
</tbody>
</table>

7 Conclusion

We utilize a u-MPS model for probabilistic modeling of sequence data, which we show is endowed with both significant parallelism and rich generative capabilities. Our sampling algorithm relies on a close connection between regular languages and generalized transfer operators of u-MPS, a connection we expect to extend nicely to other language classes and tensor network models. Of particular interest are tree tensor networks utilizing weight-sharing, which should be similarly capable of sampling from conditional distributions associated with context-free languages. Given the greater relevance of context-free grammars for natural language processing, we expect this direction to hold the promise of producing novel language models which can seamlessly integrate domain knowledge from linguistics to more efficiently learn and reproduce the structure of natural language.

A natural next step is scaling up u-MPS for real-world sequence modeling tasks, notably language modeling. Some obstacle to this process are the $O(D^3)$ cost of certain u-MPS operations (notably, computing normalization functions Z_R), along with the absence of well-established best-practices for training large tensor networks with gradient descent. We expect these issues to be circumvented by further directed research into the practical application of tensor networks in machine learning. Considering the unexpected benefits of u-MPS for parallelism and structured text generation we have demonstrated here, we expect recurrent tensor network architectures to have a bright future in machine learning.
References

