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Abstract

Quantum machine learning (QML) has emerged as an important area for Quantum
applications, although useful QML applications would require many qubits. There-
fore our paper is aimed at exploring the successful application of the Quantum
Support Vector Machine (QSVM) algorithm while balancing several practical and
technical considerations under the Noisy Intermediate-Scale Quantum (NISQ)
assumption. For the quantum SVM under NISQ, we use quantum feature maps to
translate data into quantum states and build the SVM kernel out of these quantum
states, and further compare with classical SVM with radial basis function (RBF)
kernels. As data sets are more complex or abstracted in some sense, classical SVM
with classical kernels leads to less accuracy compared to QSVM, as classical SVM
with typical classical kernels cannot easily separate different class data. Similarly,
QSVM should be able to provide competitive performance over a broader range of
data sets including “simpler” data cases in which smoother decision boundaries are
required to avoid any model variance issues (i.e., overfitting). To bridge the gap
between “classical-looking” decision boundaries and complex quantum decision
boundaries, we propose to utilize general shallow unitary transformations to create
feature maps with rotation factors to define a tunable quantum kernel, and added
regularization to smooth the separating hyperplane model. We show in experiments
that this allows QSVM to perform equally to SVM regardless of the complexity of
the data sets and outperform in some commonly used reference data sets.

1 Introduction

Quantum computation is a computational paradigm based on the laws of quantum mechanics, which
enables a huge leap forwards in processing power [1]. By carefully exploiting quantum effects
such as interference or entanglement, quantum computers are expected to efficiently solve particular
hard problems that would be intractable for classical machines, with quantum advantages such
as exponential speed-up [2, 3]. On the other hand, Quantum Machine Learning (QML) brings in
slightly different research elements from the intersection with classical Machine Learning (ML) while
leveraging the computational advantage of quantum computation [4, 5]. There are many aspects
and algorithms of QML such as solving linear systems of equations, principle component analysis
(QPCA), and support vector machines. In this paper, we focus on the support vector machine (QSVM)
model in particular. Similar to support vector machines, the Quantum SVM (QSVM) algorithm
applies to classification problems that require a feature-map implicitly specified by a kernel (i.e., a
function representing the inner product in the mapped feature space). Specifically, some prior work
discusses cases in which kernel computation is not efficient classically as it would scale exponentially
with the size of the problem (i.e., large number of features) [6, 7]. Besides kernel computation
speed-up, other potential advantages of QSVM could include improved analytical performance (e.g.,
improved model accuracy), model training speed-up, and privacy [6, 7]. Past work has shown the
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potential of exponential speed-up for training SVMs using quantum computing [7], in particular
going from polynomial complexity to logarithmic complexity using quantum techniques for inverting
the kernel matrix.

Therefore, a remaining key challenge is to provide quantum kernel functions - kernel functions
that can be readily expressed and computed with quantum circuits, that can be useful for modeling
with different types of data, as well as the practical application of QSVM to different datasets. An
important QSVM framework was introduced and implemented recently in IBM Qiskit [6]. The
authors demonstrated a high dimensional feature map and kernel - readily computable with quantum
circuits - hence we refer to it as a quantum kernel for convenience. This kernel is extremely difficult
for classical algorithms to duplicate, and classical kernels fail to achieve good performance with data
complementary to the imposed feature space. However, although this quantum kernel represents a
powerful feature map covering the complex vector (Hilbert) space, it can easily lead to overfitting
and poor performance as well, especially for other datasets not well-suited to the imposed feature
space including a spectrum of “simpler” datasets that classical kernels and SVM can perform well
on. Additionally, we are presently in the so-called "noisy intermediate-scale quantum" (NISQ) era
due to the limitation of physical qubits and fidelity, which has ideated a hybrid approach for many
algorithms such as Variational Quantum Eigensolver (VQE) [8, 9]. As one approach, QSVM can also
adopt its hybrid approach as a kernel estimator and feature-map can be constructed using a quantum
computer and the remaining steps will be done using a classical computer [6]. This would provide a
much more flexible framework for us to introduce some of the classical ML elements such as varying
types of regularization, and we can implement QSVM easily for real applications.

Therefore, our paper is aimed at exploring the successful practical application of the QSVM algorithm
balancing several practical and technical considerations under the NISQ assumption. We mainly
explore and discuss the analytical performance of QSVM over a spectrum of different data sets
starting from simple data, in which classical SVM and kernels work well, but without appropriate
application of unitary transformation, the quantum kernel shown in [6] could lead overfitting and
poor performance. We vary this complexity to more complex datasets, up to the point of the complex,
carefully constructed dataset suitable for quantum kernels in [6]. To bridge the gap between “classical
looking” decision boundaries and complex quantum state induced decision boundaries for QSVM,
we utilize general shallow unitary transformations, introducing variations of the quantum kernel and
added regularization to smooth the hyperplane classifiers. This allows QSVM to perform equally or
better than SVM regardless of the complexity of data sets. As a result, the classification performance
of QSVM performs well over different data sets and in some case, it shows better performance.

Our main contributions are:

•We show the methodology to introduce general unitary transformations to construct various feature-
maps with quantum circuits, extending the set of quantum kernels / kernel configurations that can
be applied for QSVM. We further show this can benefit model performance, with different quantum
kernel variations leading to better fit for different datasets. As such the variation selection can be
viewed as a tunable hyper-parameter (as is common with classical SVM kernels). These new quantum
kernel variations, along with introduced `2 regularization factors to QSVM, allow the extended
QSVM approach to perform equally good or better than classical SVM over different data sets,
without the overfitting issue apparent in the original quantum kernel QSVM approach.

•We demonstrate the possibility of QSVM outperforming classical SVM, while bridging the gap
between the effectiveness of QSVM from the complex data domain to the simple Euclidian data
domain, with practical application of QSVM to a spectrum of datasets. We show the results of
experiments comparing analytical performance (accuracy) of classical SVM with QSVM and the
proposed modifications across data sets. We also show how the quantum kernel variation that works
best varies for different data sets, suggesting a possible relationship between data set types and
optimal quantum kernel types.

2 Methodology

2.1 Notation and Setting

A matrix is denoted by a bold capital letter, vector by bold lowercase letters, and sets with calligraphic
font. Given a vector x, its i-th element is denoted by xi. ‖x‖`p is the `p-norm of the vector x, defined
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as (
∑
i x

p
i )

1/p. For a set B, |B| is regarded as the cardinality of this set. The inner product of vectors
u and v is denoted by u · v.

For simplicity in this work we focus on supervised binary classification, but the approach readily
extends to other tasks like regression and multi-class classification, as with kernel-based learning in
general [10]. For binary classification the task is to learn a function f∗ : X → {±1} that correctly
predicts the corresponding class label y ∈ {±1} given a corresponding input x ∈ X , where samples
(x, y) from X × Y follow some (unknown) probability distribution Pr(x, y). In the supervised
setting, we have available a set of n training samples Ds = {{x1, y1}, . . . , {xn, yn}} independently
sampled from Pr(x, y), and the goal is to learn f∗ such that it will generalize well to (accurately
predict) subsequent samples from Pr(x, y).

2.2 Support Vector Machines and Kernel-based learning

One widely used, well-studied, and effective type of model for supervised classification is the Support
Vector Machine (SVM) classifier [11, 10]. SVM classifiers approach supervised classification with
a linear model, defining the prediction as a function of the inner product between x and a weight
vector w ∈ X : f∗(x) = sign(f(x) + b), where f(x) = w · x. This decision boundary corresponds
to a particular hyperplane with orientation controlled by w and offset controlled by b. To enable
good generalization, support vector machines aim to find a hyperplane that separates the data in
different classes as much as possible (i.e., with maximum margin). In order to account for inseparable
data, a soft margin formulation is typically used in which a hinge loss is traded off with the norm
of w (which can also be seen as regularizing the model) when fitting the model. In order to enable
approximating arbitrary nonlinear functions f∗ with this simple linear model a nonlinear mapping
φ : X → Z which maps x ∈ X to some potentially higher-dimensional space Z is used, and a
hyperplane (i.e., linear decision boundary) is found in this transformed space.

Given training set Ds, training the soft-margin SVM amounts to solving the following optimization:
min. 1

2 ‖w‖`2 + C
∑n
i=1 εi

s.t. εi ≥ 0, and yi(w · φ(xi) + b) ≥ 1− εi ∀i = 1, ..., n
(1)

Equation 1 can be equivalently expressed using the dual of the optimization problem [10], resulting
in only inner products between transformed data points. This allows the problem and solution to be
expressed using only inner products of φ(x) vectors. The inner product in the transformed space
Z can then be represented by a kernel function defined in the input space, K : X × X → R such
that K(u,v) = φ(u)Tφ(v). Therefore the problem can be expressed using only kernel functions in
the input space without having to explicitly define the feature mapping φ() (which can be complex)
or find w in the possibly very high dimensional or arbitrary unknown space Z . This results in a
functional formulation for the model that can be viewed as kernel basis functions weighted by β,
with upper constraint of C acting as `1 norm regularization on β.

max. L(β) =
∑n
i=1 βi −

1
2

∑n
i=1

∑n
j=1 βiβjyiyjK(xi,xj)

s.t.
∑n
i=1 βiyi = 0, and 0 ≤ βi ≤ C ∀i = 1, ..., n

(2)

2.2.1 Importance of kernel selection and challenges of SVM

Using the nonlinear, kernelized version of SVM enables modeling arbitrarily complex and nonlinear
functions, given an appropriate kernel choice. However there are two key challenges. First is the the
polynomial scaling for training the model - the computation typically grows on the order of n3 with
number of data points n (aside from specialized sub-optimal methods, e.g. [12]). This has somewhat
limited the applicability of and possibly the interest in SVM and kernel-based methods with growing
data sizes. Second, since the kernel inherently corresponds to the nonlinear transformation of the input
data used to do the modeling, it is crucial to select the right kernel function for a given dataset [10].
There is a limited set of well-studied and commonly used classes of kernel functions (e.g., polynomial,
and radial basis function kernels) that have a few hyper-parameters that also must be carefully tuned
for the data. For example radial basis function (RBF) kernels, withK(u,v) = exp(−‖u− v‖`2 /h),
are widely used but the kernel width h must be carefully tuned to find the right fit to data. The
importance and difficulty of selecting an appropriate kernel has led to research on automatically
learning a kernel function [13, 14, 15] but this is also computationally challenging in general and
often does not provide explicit kernels, or restricts the set of possible kernel functions in some way.
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2.3 Quantum SVM and Quantum Kernels

We argue that quantum computing has the potential to help address the challenges of SVM and
kernel learning, if we can use quantum circuits to compute useful kernel functions and improve the
scalability of fitting an SVM model. Past work has shown the potential of exponential speedup for
training SVMs using quantum computing [7], in particular going from polynomial complexity to
logarithmic complexity using quantum techniques for inverting the kernel matrix.

Therefore, the remaining key challenge is to provide quantum kernel functions - kernel functions that
can be readily expressed and computed with quantum circuits, that can be useful for modeling with
different types of data. As the kernel function inherently reflects the transformed data space for mod-
eling, different kernels and classes of kernels implicitly represent different types of transformations,
and different kernels will be best suited for different data.

2.3.1 Quantum kernels and decision boundaries

Quantum SVM and kernels can exploit the higher dimensional space efficiently and can generate
feature maps and subsequent decision boundaries that are difficult for classical kernel functions
to match as shown in Figure 1a, illustrating QSVM decision boundaries for a specialized data set
designed to be separable using quantum kernels proposed in [6]. This can be understood by how the
classical data are mapped and transformed into the Hilbert space using the Bloch Diagram in Figure
1b.

(a) (b)
Figure 1: (a) QSVM decision boundary. (b) The Bloch Sphere.

However, we found this kernel as proposed in [6], while effective for the complex designed data,
does not yield accurate results on a spectrum of less complex and classical data sets (illustrated
in subsequent sections). We therefore propose an extension to the kernel, by introducing multiple
rotations and rotational factors (α). At the beginning to build the feature map, the classical features
needs to be mapped into quantum data points, these data could be scaled and mapped into 0 to 2π or
be directly fed in the unitary transformation gate as shown in Equation 3.

Uφ(x) = exp(i
∑n
j=1 αjφs(x)

∏
σj∈{X,Y,Z}) (3)

The α represent rotation factors, which control phase rotation depending on the feature values. The σ
represents unitary Pauli rotation transformation for X, Y and Z. This reflects Ising like interactions
(i.e. ZZ or YY) and non-interacting terms (i.e. Z, or Y). These gates are preceded by the Hadamard
gates applied to each qubit as in [6].

Using different permutations of Pauli transformations and rotation factors α, we can control how
qubits revolve around the Bloch sphere presenting different complex amplitudes depending on input
feature values and treat them as hyper-parameters to fit to given data. This allows us to control the
decision boundaries to be more representative of the data pattern without creating overly-complex
decision boundaries. Also it allows the complex hyperplane to be created as needed based on the
data set. To demonstrate the point, two artificial data sets were generated for the comparison of two
extreme cases: randomly generated XOR-patterned data and another complex data [6], and their
corresponding decision boundaries are shown in Figure 2 using our proposed quantum kernel. This
demonstrates how flexible QSVM decision boundary can be. Though two data sets have similar
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centroid locations for different labels, clearly different feature spaces and hyperplanes are required to
separate and model these data labels successfully. Using the general unitary rotation in Equation 3, we
can create appropriate decision boundaries for these two distinct data sets by optimizing the rotation
factors and combinations of Pauli gates depending on the complexity of the data sets. These gates in
Equation 3 provide enough flexibility to match the complexity of complex decision boundaries but
can also be simplified to be effective for simple data sets such as XOR.

(a) (b)

(c) (d)
Figure 2: (a) XOR patterned data. (b): Complex data. (c) QSVM decision boundary for XOR patterned data.
(d): QSVM decision boundary for complex data.

To give a high level intuition, single unitary rotation gates can provide a variety of feature maps that
can be used to create simple boundary conditions. This single unitary rotation will revolve along with
the input data depending on how it is mapped and applied to the phase rotation of the gate as shown
in Figure 3a. If features need to interact, the interaction can be created through the entanglement (i.e.
ZZ gate) and propagates diagonally through the two feature space (Figure 3b). By combining these
two single unitary and interacting transformation together, the complex and higher order of decision
boundaries can be created shown in Figure 3c.

2.4 Regularization

Regularization is used to reduce generalization error and model complexity by including model
complexity penalties in the training objective. Due to the hybrid approach for QSVM mentioned
previously, we can more easily implement regularization as part of the optimization process as shown
in Equation 4 - defining new loss function L̂(β) to use in place of L(β) in Equation 2. Here we
include the `1 constraint as in the classical formulation (which can also be expressed as `1 norm
penalty), as well as introducing an additional `2 norm penalty.

L̂(β) = L(β) + λ1 ‖β‖`1 + λ2 ‖β‖`2 (4)

Given the flexibility of QSVM’s decision boundary, introducing proper regularization is an important
factor to avoid over-fitting. Introducing `2 regularization can also help encourage smoother blending
of the complex functionals, which may be particularly beneficial with these more complex kernel
functions, vs. `1 penalty which encourages sparse selection as opposed to smoothing. Interestingly,
we found the `2 regularization to have a much greater smoothing effect in our experiments.

From Figure 4 we can see how the “classical-looking” (simpler) decision boundaries can be formed
with the proposed Quantum kernel and SVM through appropriate gate implementation (Equation 3)
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(a) (b)

(c)
Figure 3: (a) Single unitary rotations by each factor. (b): Entangled unitary rotations by two factors.(c):
Combination between (a) and (b).

and `2 regularization factors (Equation 4) during the optimization step. The combination of Y and
YY Pauli transformation can easily overfit this data set (Figure 4a) and it can be gradually improved
using a simple transformation and low rotation factor α (Figures 4b-4c). Finally, we can see how
regularization can improve the boundary and make the decision boundary of QSVM look like that
of classical SVM (Figures 4d-4e). Here λ1 = 0 and for Figure 4d λ2 was increased until there was
a noticeable impact on the decision boundary. Note, Figure 4a illustrates how direct application
of the type of quantum kernel approach from [6] may lead to overfitting on such simpler decision
boundary data. This along with Figures 4b-4d suggests the need for the proposed modifications
to enable quantum kernels to be effective for a wide variety of data. Note here we loosely use
terms like “classical-looking” to describe the intuitive idea of decision boundaries that are in some
sense less complex (in terms of smoothness and minimal geometric separation of class groups) and
more representative of boundaries typically derived from using classical kernels. We leave precise
definition and more investigation of how to characterize the difference in decision boundaries and
specifics of what data works better with different quantum kernel variations to future work.

3 Analytical performance

As explained in Section 2, the function of an SVM kernel is to implicitly transform data into a more
suitable space for modeling. Different SVM algorithms use different types of kernel functions such
as linear, nonlinear, polynominal, radial basis (RBF), and sigmoid, as well as special kernels for
sequence data, graphs, text, and images. Arguably the most commonly used type of kernel function is
RBF due to its localization and finite response[16]. In this section, we present classification accuracy
results for different types of quantum kernels for QSVM and compare to RBF for classical SVM as
shown in Table 1. Our motivation is to demonstrate the performance of QSVM could be comparable
to classical SVM, in particular with the proposed extensions, and in certain cases, even better - i.e., as
the data becomes too complex / no longer well-modeled with classical kernels.
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(a) (b) (c)

(d) (e)
Figure 4: Breast cancer data from Python Sklearn datasets (a) Pauli Y YY with α=2. (b): Pauli Y with α=2. (c)
Pauli Y with α=1.(d) Pauli Y with α=1 and L2 regularization.(e) Classical SVM.

For classical SVM and kernel results, we performed light hyper-parameter tuning on validation data
to arrive at seemingly reasonably results close to best obtainable through tuning (e.g., varying hyper
parameters and observing the impact on classification performance and decisions boundaries, and
selecting those that showed best data fit). More thorough tuning might result in somewhat improved
scores, but the reported results should be representative of the type of performance we could obtain
with the classical SVM kernel. As mentioned we focused on the RBF kernel due to its wide use and
general flexibility in modeling arbitrary and complex decision boundaries. Further, initial experiments
trying other common kernels did not yield improved results.

For this study, five different balanced data sets were prepared; two artificially generated data sets
(XOR and previously described dataset of [6]) and three commonly used data sets (wine, breast
cancer, and hand-written digits) from Scikit-Learn [17], compressed into 2 dimensions using principle
component analysis (PCA) as shown in Figure 5, in order to create more complex looking data and
decision boundaries. Because of the balanced data, we look at only the classification accuracy as a
metric for the comparison, and held out 30% of the data for testing. XOR patterned data (5a) and
the artificial complex data sets (5b-5d) were created as discussed. We can observe an interesting
trend over different data sets; classical SVM performs gradually more poorly over the noticeably
increasingly complex data sets such as compressed hand-written digits (5d) and the artificial complex
data (5e). However, the performance of QSVM can be consistent through different data sets with
appropriate combination between unitary gate and rotation factor. In fact, we can see the better
performance from QSVM over classical SVM in the compressed hand-written data set as well.
This leads to an interesting point in that QSVM can potentially provide better performance if the
underlying boundary is a complex one not captured well by traditional classical kernels, and further
directly duplicating the quantum kernels could be intractable as mentioned previously [6]. Therefore
this argues for a potential analytical performance advantage from using QSVM as we propose, vs.
classical SVM.

Table 1: Comparison of SVM and Quantum SVM held-out test accuracy with different data sets. Only accuracy
metrics are used as all data are balanced. The table is intended to show high level performance trends rather than
comprehensive / exhausting benchmark comparison.

Model Feature Maps(function) Datasets
XOR Wines Breast Cancer Digits Complex

Classical SVM RBF 99 95 96 43 5

Quantum SVM

Pauli Y 98 95 96 43 66
Pauli Z 80 97 95 38 66
Pauli YY 67 44 61 20 52
Pauli ZZ 42 67 62 19 52
Pauli Y YY 82 98 92 48 88
Pauli Z ZZ 92 97 90 49 100

7



(a) (b) (c)

(d) (e)
Figure 5: (a) XOR patterned data. (b): PCA compressed wine data. (c) PCA compressed breast cancer.(d) PCA
compressed hand-written numbers.(e) Artificial complex data.

4 Additional Related Work

There is some related work exploring different aspects / approaches for QSVM or QML. A QSVM
system based on an optimized HHL (Harrow, Hassidim, and Lloyd), quantum circuit with reduced
circuit depth was presented to classify two-dimensional datasets that are linearly separable[18]. Two
approaches for building a quantum model for QSVM were discussed using 2-dimensional mini-
benchmark datasets. The quantum device estimates inner products of quantum states to compute a
classically intractable kernel. This kernel can be fed into any classical kernel method such as SVM.
Also, a variational quantum circuit as a linear model was used to classify data explicitly in a Hilbert
space [19]. From tensor networks for machine learning in the classical context, quantum computing
approaches to both discriminative and generative learning, with circuits based on tree and matrix
product state tensor networks, were proposed to show benefits with NISQ devices [20].

5 Conclusion

We have discussed and demonstrated how to create decision boundaries using Quantum Support
Vector Machines, which exploits a rich feature space. Due to the powerful feature transformation,
finding appropriate kernel functions, which can be readily expressed and computed with simple
quantum circuits, is important for analytical performance over various different data sets. To avoid
overfitting and increase the applicability of the quantum kernel, we proposed quantum kernels using
general unitary transformation with rotation factors along with added regularization for QSVM. This
combination allows QSVM to perform consistently over different types of data sets. In certain data
sets when data are complex / mixed up such that the classical kernel approaches might fail, QSVM
can perform better.

For simplicity in this work experiments were performed on low-dimensional data. One key area
of future work is to apply this approach to higher-dimensional data as well, i.e., data having larger
numbers of features. We plan to perform similar experiments on more real-world data. One challenge
with this is that for larger number of features, larger quantum circuits and number of qubits could
be needed, and even simulation of these larger systems with classical computing can become more
compute-intensive. This challenge will be mitigated as effective number of qubits in quantum systems
increases in the future. Another area of future work is determining and evaluating speed-ups from
quantum vs. classical approaches.
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