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Abstract

PointNet is a bedrock for deep learning methods on point clouds for 3D machine
vision. However, the pointwise operations involved in PointNet is resource in-
tensive, and the expressiveness of PointNet is limited by the size of its feature
space. In this paper, we propose Quantum PointNet with a rectifed max pooling
operation to achieve an exponential speedup performing the pointwise operations
and meanwhile obtaining a quantum-enhanced feature space. We provide an im-
plementation with quantum tensor networks and specify a circuit model that runs
on near-term quantum computers. Meanwhile, we develop the NA-GEP (Nesterov
Accelerated Gradient Estimation by Projection) optimization framework, together
with a periodic batching scheme, to help train large-scale quantum networks more
efficiently. We demonstrate that Quantum PointNet reaches competitive perfor-
mance to its classical counterpart on a subset of the ModelNet40 dataset with 48x
fewer operations required to process a point cloud. It is also shown that NA-GEP
is robust under different kinds of noises. A mini Quantum PointNet is able to run
on real quantum computers, achieving ∼100% accuracy classifying three kinds of
shapes with a small number of shots.

1 Introduction

We live in a 3-dimensional world. Machines, especially robots, need to interpret 3-dimensional sur-
roundings precisely to interact rationally with their environment. Thus, understanding 3D information
is of great importance. There had already been a bunch of hand-crafted approaches to problems in 3D
machine vision in the early ages of artificial intelligence (see [1, 2]). Deep-learning-based algorithms
that handle different representations are developing rapidly [3–7]. They give impressive results on a
variety of 3D machine vision problems.

However, the fact that the volume grows at a fast rate of O(x3) with the resolution x limits the
performance of many deep learning methods based on volumetric representations such as voxels. In
2017, Qi et al. proposed an architecture, PointNet [6], which exploits the power of the symmetric
operation, max pooling, to handle directly point clouds which were previously considered as an
irregular data format hard to process. The PointNet classification network takes a point set as input,
applies pointwise feature transformations with multi-layer perceptrons, and then aggregates point
features by max pooling. Another multi-layer perceptron is employed to generate final classification
scores. It reduces unnecessary volumious latents significantly.

First Workshop on Quantum Tensor Networks in Machine Learning, 34th Conference on Neural Information
Processing Systems (NeurIPS 2020).



Unfortunately, since there is a large quantity of points in point clouds, the pointwise operations are
resource intensive. Moreover, the architecture creates translated replicas of features to recognize the
same object in different orientations, causing an exponential growth in number of features required
with SO(3) (such as rotations). As a result, [6] has pointed out that the expressiveness of PointNet is
sensitive to the size of the max pooling feature space. Overall performance drop is seen if the feature
space is not large enough.

For this reason, we consider exploring the power of quantum to implement PointNet with a richer
feature space and at a lower computation cost.

Here we interpret the pointwise operations in PointNet as generating implicit field values. In 3D
machine vision, a field is an union of connected regions in the space, typically represented explicitly
by meshes and point clouds. An implicit field [8] is defined by a continuous function over the
space, with different values inside and outside the field area. A set of disjoint implicit fields form a
non-regular grid-like structure. In this sense, max pooling is invariant not only to permutations in
the input point cloud, but also to the local density of points, which gives it an advantage to other
symmetric operations such as averaging. Consequently, the element setting for PointNet is quite
flexible, as long as the model keeps the capability of generating such fields and uses a max-out
aggregation operation.

As the size of max pooling feature space is the main issue of the expressiveness of PointNet,
we propose to use a quantum implicit field learner, which can provide an exponential speedup,
since quantum circuits naturally have a exponentially growing feature space. Meanwhile, the
generated feature space is enhanced with quantum features. A novel rectified max pooling operation
together with a regularization on sparsity is applied to add more expressiveness and robustness to the
architecture. A comparison between pointwise pipelines of PointNet and Quantum PointNet is shown
in Fig. 1
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Figure 1: Comparison of pointwise pipelines between PointNet (upper) and Quantum PointNet
(lower).

Meanwhile, we take a new approach towards training quantum networks, since this is a very general
and severe challenge so far. We propose the Nesterov Accelerated Gradient Estimation by Projection
(NA-GEP) optimization framework, which can adapt between a precise gradient evaluation and
a rough estimation from pertubation to perform efficient optimization steps without the need of
analytically evaluating the gradients. Moreover, a batching scheme to use in company with NA-GEP
is introduced, which eliminates the need for iterating through the full training set at each step, and is
essential for efficient training on large datasets.

Therefore, we combine the innovative quantum PointNet arcitecture and the improved optimization
framework to achieve a highly practical alternative PointNet. It uses 48x fewer operations for
processing a point cloud on a subset of the ModelNet40 dataset, and a mini Quantum Pointnet
achieves ∼100% accuracy classifying three kinds of shapes using a real quantum computer. Our
optimization method demonstrates robustness under various types of noises and shows good capability
in training large-scale networks.
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2 Related works

Quantum Machine Learning As quantum computing is entering an NISQ (Noisy Intermediate
Scale Quantum) [9] era, many quantum-based methods are achieving supremacy over their classical
counterparts, including quantum machine learning [10]. Even before real quantum computers are
manufactured, there is already early implementations of QPCA (Quantum Principle Component
Analysis) [11] and QSVM (Quantum Support Vector Machine) [12], suggesting a quantum speedup
in the learning process. The concept of quantum deep learning was suggested in [13]. More proposals
of quantum learning algorithms on real devices, such as Quantum versions of CNN (Convolutional
Neural Networks) [14] and quantum enhanced kernel methods [15, 16] have been raised, showing
that quantum methods can efficiently learn patterns that are considered difficult to recognize with
classical models.

Quantum circuit optimization methods In the celebrated VQE (Variational Quantum Eigen-
solver) [17] hybrid optimization algorithm, gradient-free optimization methods such as the Nelder-
Mead method [18] are suggested to apply. But the cost of these methods grow quickly to the number
of parameters and thus do not perform well for machine learning tasks where typically thousands or
millions of parameters are trainable. Heuristic searching methods have been used in a hybrid approach
for training quantum circuits [19], but these methods do not have a guarantee of convergence on larger
models. [20, 21] suggested using the parameter shift rule to evaluate the gradients of parametric
quantum gates for optimization. But extra data evaluations scale linearly to the number of parameters
and soon become intractable for large-scale networks, and the application of their method to arbitrary
circuits rely on the decomposition of gates, which causes another overhead.

Quantum Tensor Networks Recently, Quantum Tensor Networks (see [22]) as a universal model
for quantum computation is rapidly gaining attention, especially for the construction of machine
learning architectures [23–27]. 1 By decomposing large tensors into a network of smaller ones,
modular hardware designs and efficient computations are allowed, which are shown to be important in
both machine learning and quantum mechanics. Theoretically, [28] proves that two types of quantum
feature maps, namely the parallel scenario and the sequential scenario, have universal approximation
properties, which means any continuous function from input Hilbert spaces to measurements can be
approximated by deep enough quantum tensor networks. This sheds light upon innovation for more
quantum-tensor-network-inspired machine learning protocols.

3 Methods

3.1 Quantum PointNet

The data pipeline of Quantum PointNet is illustrated in Fig. 2a. The architecture is composed of
a feature map, a quantum implicit field learner (QIFL), a rectified max pooling operation, and a
classifier.

The feature map converts the raw point coordinates in the point cloud to a quantum state vector. In
order to put aside operations for a powerful QIFL, only single-qubit operations are used to form the
feature map:

F (x, y, z) = Z ◦Rx(x)|0〉 ⊗ Z ◦Rx(y)|0〉 ⊗ Z ◦Rx(z)|0〉 ⊗ |00 . . . 0〉, (1)

where Z is Pauli Z flip and Rx is a parametrized rotation around x. Point coordinates are mapped
into amplitudes of the quantum states in this way. Some other candidates can be found in [16, III. A.].

QIFL, the quantum implicit field learner, is able to generate implicit field function values from
the input state vector. There are many possible implementations of this learner module. In our
implementation (Fig. 2b) , the learner is decomposed into a tensor network with layers of parametric
one-qubit operations and fixed entangler maps. More specifically, in the circuit model a fully
parameterized U gate is used for the one-qubit operation, and CNOT gates are stacked to enable full
entanglement between all qubits. (For more details see Appendix A)

1The widely-adopted circuit model for universal quantum computers is a special case in Quantum Tensor
Networks.
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Figure 2: Architecture of our model. Upper: The classification pipeline of Quantum PointNet. The
feature map and the quantum implicit field learner (QIFL) runs on a quantum computer, the rectified
max pooling works on a classical computer, and the classifier can be either quantum or classical.
Lower: The layered Quantum Tensor Network structure for QIFL and its circuit implementation.

The rectified max pooling operation is of key importance in Quantum PointNet. First, in order to
mitigate noise present in current quantum computers, we impose sparsity on the generated values for
each point by adding a regularization term to be maximized:

LSp = λ
∑
i

std(QIFL(|ψi〉)), (2)

where |ψi〉 denotes the quantum state generated by the feature map and std is the standard deviation
function. To provide the network back with capabilities of generating different amplitudes and
meanwhile further reduce noise effects, a rectifying operation is applied after max pooling:

Rec(p) =

{
p2 p ≤ Th

p otherwise
, (3)

where Th defaults to 0.15. Note that this may cause gradients to vanish in the beginning as sparsity
has not yet been learned. We suggest employing a huber function if Th ≤ 10/n where n is the size
of the feature space, denoted as RecH :

RecH(p) =

{
p2/Th p ≤ Th

p otherwise
, (4)

and in other cases a normalized version of Rec, denoted as RecN :

RecN (p) = (Rec(p)− mean(Rec(p)))/std(Rec(p)). (5)

Mean values and standard deviations are computed on the samples’ basis.

Finally, the classifier generates the final results of classification from the max-pooled global implicit
field values. The implementation is arbitrary, as long as linear combinations of features can be
represented. A traditional softmax cross-entropy loss function is then applied to guide the training
process.
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3.2 Optimization method

In this section, we present the proposed NA-GEP (Nesterov Accelerated Gradient Estimation by
Projection) optimization framework, and introduce a batching scheme for efficient training on large
datasets. This enables us to train large-scale quantum networks, and thus we can apply quantum
computing techniques more flexibly to deep learning.

3.2.1 NA-GEP

The starting point is a one-sided finite-difference estimation of the gradient, which is a direct
consequence of projecting gradient onto a random vector ∆~x:

∇̂f(~x)i =
f(~x+ ∆~x)− f(~x)

||∆~x||
∆~xi. (6)

If we repeat the operation above on a set of random but orthogonalized vectors, we will get a more
accurate estimation of the gradient. In addition, we introduce Nesterov’s Accelerated Gradient [29]
into the procedure. Under this setting, NAG is able to average over the past few steps of estimated
gradients to reduce variance of estimation. Furthermore, we found that the Nesterov’s momentum
term is much better a starting direction for the projection process in Eq. (6), as it combines effectively
with NAG’s lookahead property for a brake towards the direction of the momentum term. Meantime,
it can contribute more in the descending rate since it is probably in a direction closer to the current
gradient than a random vector.

Hyper-parameters are adapted on plateau to improve local convergence. For the detection of plateau,
we use the function scheme proposed by [30] for a clean target f without stochastic properties or
noises. For noisy fs we simply track the moving average and set a threshold.

A regularization of momentum clipping is employed which empirically may help improve generaliza-
tion capabilities. It also helps NAG to brake more timely.

Combining all of these we arrive at a gradient-free optimization framework with good performance.
The whole optimization process is shown in Algorithm 1. η is the momentum coefficient. P is the
order of projection estimation. µ is finite difference delta. δ is the step size, or learning rate. c, eδ, eη
are clipping and damping coefficients. See Appendix B for a detailed gradient projection routine.

Algorithm 1 NA-GEP optimization process
Input: f , θ0; Output: θ
θ ← θ0,m← ~0
while not converged do

G← grad_proj(f, θ + ηm,P, µ, ηm) . NAG
m← ηm− αG
m← clip(m,−c, c) . Momentum clipping
θ ← θ +m . Updating parameters
Compute and record f(θ)
if on plateau then

η ← eηη, P ← P + 1, δ ← eαα
end if

end while

3.2.2 Batching scheme

Traditional mini-batch gradient descent attains a set of random samples from the training set at each
iteration. However, this works poorly with stochastic optimization methods.

In view of this problem, we introduce a batching scheme to apply together with NA-GAE: The
periodic scheme. A mini-batch is generated and kept for several iterations before another mini-batch
is sampled. The scheme aims at reducing the variance within the gradient to be estimated while
keeping unbiased among the dataset to achieve higher descending rates. With a moderately large
batch size the effect of this scheme is dramatic under NA-GAE.
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4 Results

4.1 Point cloud classification

4.1.1 Classifying shapes on a quantum computer

This experiment is carried out on a mini-net that runs on a real quantum device available at the time.
The QIFL is composed of 5 qubits and 2 layers. 3 types of point clouds, namely spheres, cubes and
cylinders, are generated and a Quantum PointNet is trained to classify them. 1536 point clouds are
generated for the training set and 512 point clouds are generated for the test set. After 80 epochs
100% accuracy is reached on the test set. The test is run on a device at 5-qubit IBMQ Valencia.

We further study the effect of noise on our model. Classification accuracy is tested for different
numbers of shots with and without noise. For each case, extra random samples are generated and
evaluated until the half Wilson Interval [31, 32] with 3σ confidence (99.87%) is shorter than 1%. The
noise model of IBMQ device is obtained and simulated with Qiskit[33].

The results are presented in Fig. 3. It is shown that QIFL, though shallow, has a good capability of
learning relatively complicated implicit fields (Fig. 3a). Moreover, only an extremely small number
of shots (within 20, see Fig. 3b) is required to get good classification accuracies, even under the noise
of currently available devices in the NISQ era.
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Figure 3: (a) Visualization of randomly chosen implicit fields learned by QIFL. 512 points distributed
uniformly within the cube [−1, 1]3 are sent to the trained QIFL to get activation values of the implicit
fields. (b) Wilson’s interval of 3 sigma confidence for classification accuracy to number of shots, on a
simulated ideal device and under noise of 5-qubit IBMQ Valencia.

4.1.2 A real-world classification problem

To further illustrate the power of Quantum PointNet and our optimization framework, we train a
Quantum PointNet with 8 qubits and 5 layers for a real-world task: to distinguish point clouds of
planes, cars and vases. We randomly pick these three classes of point clouds from ModelNet40 [34]
to form a subset, ModelNet3, for classification benchmarking. 256 points are uniformly sampled
from each model. Under this setting, there are 1989 point clouds in the training set and 300 in the test
set.

Quantum PointNet achieves a high accuracy of 99.0% on the test set, matching its classical counterpart,
with way fewer operations required, as listed in Table 1. Parameters for the classical PointNet is
adopted from [6] and scaled to a feature space size of 256, resulting in 4 pointwise dense layers of
size 64, 64, 256, 256. Number of operations for Quantum PointNet is calculated with number of
shots set to 20. A classical operation means an arithmetic operation between two numbers. It is an
estimated value, and may change slightly with different implementations. (Refer to Appendix A for
details about the circuit)

The training process is shown in Fig. 4. For both loss (Fig. 4a) and accuracies (Fig. 4b), it is shown
that our optimization method enjoys a fast descending rate in the early stage of optimization, and still
keeps steady towards the local convergence.
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Table 1: Comparison between classical and quantum PointNets on ModelNet3.

# Classical operations Qubit operations Test accuracy

PointNet ∼22M / 99.0%
Quantum PointNet ∼59K ∼399K 99.0%
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Figure 4: Convergence of (a) training and test loss and (b) overall accuracy during the training process
of Quantum PointNet on ModelNet3, with our proposed optimization method.

4.2 Performance of NA-GEP

In this section, experiments on our optimization framework, NA-GEP, are carried out. A target
function of the form

f(x) = ||max(Ax, 0) · Y ||2 (7)

is generated and optimized under different settings. A and Y are matrices sampled from the Glorot
Normal [35] distribution and x is a vector of n = 512 dimensions. In addition, our method is
compared to another method that also does not require full evaluations of the gradient of target
function, SPSA [36].

The results are shown in Fig. 5. With a reasonable choice of parameters (e.g., P = 2, 5), NA-GEP
achieves better performance than SPSA (Fig. 5a). It is shown that NA-GEP is robust under both
typical additive noise and a stronger noise where a random value may be returned from the target
function each time it gets evaluated (Fig. 5b). Also, it can be seen that the projection method
enjoys a rate much faster than the Monte-carlo search, and perfectly matches the ground-truth at full
dimensions, 512. (Fig. 5c).

See Appendix C for a study on the batching schemes.

5 Discussion and outlook

NA-GEP, SGD and the parameter-shift rule We notice that SGD [37] (Stochastic Gradient
Descent, with an optional NAG setup) algorithm is a special case under our optimization framework.
It is the case where f involves a stochastic mini-batch sampling and P is set to full dimensions, n.
The parameter shift rule [20, 21] focus on reducing the approximation error of discarding higher-order
terms by utilizing properties of rotations on gates. The experiments show that this kind of error is
small, without the need of tuning hyper-parameters heavily (see Fig. 5c, the estimated rate reaches
the ground truth at 512 evaluations with almost no error). Nevertheless, utilizing these properties
may further improve performance of NA-GEP, which may be explored in the future.

Extension to Quantum PointNet We now discuss some possible extensions to Quantum PointNet
so that it can perform other 3D Machine Vision tasks. We consider merging global information
with local information, and more specifically here, merging the implicit field values with the point
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Figure 5: Results of NA-GEP on an optimization problem with 512 tunable parameters. (a) Effect of
different P values on the optimization process is studied and compared with SPSA. η = 0.95. Other
parameters are set to default values. (b) The robustness of our method to noise. NA-GEP with P = 5
and η = 0.95 is applied to minimize the generated f with and without noise. The values are those
recorded by the algorithm. Two types of noises are studied: 1) Additive Gaussian noise. (Gauss.
N.) 2) Random value noise where the observed value is replaced with a uniformly random value
with 10% probability. (R. Val.) (c) Maximum rate of descent achieved with number of observations,
compared with random sampling (Monte-carlo method) and the ground truth (the rate in the direction
of gradient). The SPSA method has large variance in its performance estimating the rate of descent,
and is thus not compared.

coordinates, which is helpful for segmentation and other tasks, and can further increase the capability
of learning non-linear features.

The basic consideration is that there may not be too many classical operations in the implicit field
learner for the exponential quantum speedup to take place, which in general limits the complexity
of the merging process. Hopefully, a Quantum Convolutional Neural Network [14] combined with
Autoencoder [38] technologies can be employed to compress the information into a few classical
values, after which the feature mapping process can be applied without much computational penalty.

In all, there is still much more to explore in the field of quantum speedups or quantum-enhanced
methods for 3D Machine Vision.

Deep learning on quantum circuits in the NISQ era Our work, together with several previous
works [14–16], shows that quantum models have interesting capabities of pattern recognition under
some specific settings. More generally speaking, computational power is the basis of all deep learning
tasks, while universal approximation theories predict the flexiblility of building blocks in deep
learning models. Thus the exponential speedup provided by quantum circuits can be fully utilized
in this area, bringing possible merits due to the extra computational power brought by quantum
computing.

The proposed rectifying operation with a regularization on sparsity can be extended to a range of other
models that exhibit similar properties. The requirement for fewer shots and the stronger resistance
towards noise are appealing as they lead to practical use of quantum circuit-based computers in the
NISQ era for deep learning.

Broader Impact

We would like to state that this work not only benefits the field of 3D machine vision, but also, broadly
speaking, stimulates the multidisciplinary research for the emerging quantum machine learning
science and techniques. Our work with detailed explanation on the method and open access for
relevant data is beneficial for creating equal learning opportunaties among all learners. On the other
hand, it’s also worth noting the good performance by quantum speedups is highly related to the
hardware quality of quantum computers. This would cause a concern that the users with access to
better quantum computer hardware would enjoy more benefit from this work.
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Appendix A. Implementation details of Quantum PointNet

Adaptive entangler map An advantage of composing the network with one-qubit gates and fixed
entangler maps is that there is lower dependence on the expressiveness of entangler map. Any
sequence and combination of CNOT gates can be employed, as long as full entanglement is fulfilled.
This allows hardware-efficient implementations for free by adaptively selecting strongly connected
qubits to apply CNOT on.

For the IBMQ Valencia device, the qubit connectivity topology (obtained with Qiskit [33]) is shown
in Fig. A1a. Correspondingly, in the entangler map (Fig. A1b) CNOTs gates are applied according to
the connectivity.

(a) (b)

Figure A1: (a) Qubit connectivity topology of 5-qubit IBMQ Valencia. (b) The entangler map adapted
to IBMQ Valencia device.

QIFL implementation for ModelNet3 In the circuit implementation of QIFL for the experiment
of classification on ModelNet3, 4 layers composed of parametric U3 gates and an entangler map are
stacked, with a final layer composed of parametric U1 gates. The structure of first 4 layers is shown
in Fig. A2a (repeated 4 times). The entangler map is made of cycling CNOT gates (Fig. A2b). The
final layer is shown in Fig. A2c. This results in a total 72 gate applications required for each point in
the point cloud.

(a) (b) (c)

Figure A2: (a) Layer structure of 8-qubit QIFL composed of parametric U3 gates and an entangler
map. (b) Fixed entangler map in each layer of 8-qubit QIFL. (c) The final layer composed of
parametric U1 gates in 8-qubit QIFL. For detailed explanations about gates see [39].
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Combining with the feature map which involves 2 gates on each of 3 coordinates, 78 qubit operations
are required for each shot and for each point in the point cloud, which results in 78× 20× 256 =
399, 360 operations required to process each point cloud at 20 shots, under the experiment setting.
Classical operations in Quantum Pointnet involve measurement, input conversion, rectified max
pooling and the linear classifier. 11× 20× 256 + 256× 9 = 58, 624 classical operations are required
in our implementation for each point cloud. Compared with 256× (3× 64 + 64× 64 + 64× 256 +
256 × 256) = 22, 069, 248 operations required for its classical counterpart, there is a significant
reduction in the number of operations required. The difference will be even larger if more qubits are
employed, since there is an exponential speedup from classical to quantum under the setting.

Also note that the mean value of the QIFL outputs for each point are fixed to 1/2n where n is number
of qubits, due to the normalization property of measurement probability. Thus the std function
involved in Eq. (2) can be computed on a shots’ basis, without the need of dealing with a dense vector
of size 2n classically.
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Appendix B. Details and analysis on NA-GEP

Convergence of NA-GEP The optimization framework we proposed falls into the category of
stochastic gradient optimization, which has a systematic convergence theory. [40] and [41] prove that
the convergence rate of these methods on smooth convex functions is given by O(L/T + σ/

√
T ),

where L is a Lipshitz constant of ∇f , σ is the variance of gradient estimation and T is number of
iterations of optimization. With NAG the convergence rate is improved to O(L/T 2 + σ/

√
T ), which

gives an advantage of our proposed method to SPSA in the early stages of the optimization when the
term L/T dominates the rate.

In addition, hyper-parameters are adjusted on plateau, which forms an adaptive warm restart operation
as defined in [30]. [42] shows that this could reach O(σ/T ) local convergence rate instead of
O(σ/

√
T ) for strongly convex functions.

Intuitively, the NAG reduces the variance of the estimated gradient by averaging, leading to fast
learning in the early stage of training. When the optimization reaches a neighbourhood of the critical
point, NAG will oscillate, preventing the algorithm from convergence. In this case momentum decay
is increased and learning rate is reduced on plateau.

The Gradient Estimation by Projection procedure and relation to SPSA The procedure is
shown in Algorithm 2. ε is a small number to prevent zero-length projection bases and is set to 0.001
in the experiments.

Note that if η is set to 0 and random_vector samples from {−1, 1}n the procedure is reduced to
one-sided SPSA.

Algorithm 2 Procedure of Gradient Estimation by Projection

Input: f , θ, P , µ, β0; Output: Ĝ
Ĝ← ~0
β0 ← β0 + random_vector() · ε . Prevent zero-length β0
for i = 1 to P − 1 do

βi ← random_vector()
end for
r ← f(θ)
for i = 0 to P − 1 do

βi ← gram_schmidt(βi, [β0, β1, . . . , βi−1])

Ĝ← Ĝ+ (f(θ + µβi)− r) · βi/µ . Projection
end for
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Appendix C. Study on the batching schemes

In this section, experiments are carried out on the proposed batching scheme. We consider a least
squares linear regression problem with 512 variables:

min
~w
L(~x, y) = min

~w

∑
i

(~w · ~xi − yi)2 (C1)

SPSA and NA-GAE are applied to optimize the function on a dataset (training and test) randomly
generated by computing values with a ground-truth ~w added by a gaussian noise. Random denotes
the classical batching scheme. Periodic denotes the proposed approach. Under the Iterative scheme,
for each iteration a sample within the mini-batch is replaced with a new random sample from the
training set. The results are shown in Fig. C1.

The Iterative scheme may enjoy a higher rate of descent under some situations, but it suffers from
stability issues and is not employed.
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Figure C1: (a) Comparison of the optimization process based on full and mini-batched evaluations.
(b) Comparison between different batching schemes for a fixed batch size of 128.
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