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Abstract

Tensor network (TN) methods have proven their considerable potential in determin-
istic regression and classification related paradigms, but remain underexplored in
probabilistic settings. To this end, we introduce a variational inference TN frame-
work for supervised learning, referred to as the Bayesian Tensor Network (BTN).
This is achieved by making use of the multi-linear nature of tensor networks to con-
struct a structured variational model which scales linearly with data dimensionality.
The so imposed low rank structure on the tensor mean and Kronecker separability
on the local covariances, make it possible to efficiently induce weight dependencies
in the posterior distribution, thus enhancing model expressiveness at a drastically
lower parameter complexity compared to the standard mean-field approach. A
comprehensive validation of the proposed approach indicates the competitiveness
of BTNs against modern structured Bayesian neural network approaches, while
exhibiting enhanced interpretability and efficiency.

1 Introduction

Tensor networks (TNs) have been recently employed in a variety of Machine Learning (ML)
paradigms. The increasing interest of the ML community in TNs stems from their suitability
to operate with both dense and sparse data, their Big Data compatible properties, such as linear
scaling with data dimensionality and constant scaling with the training size (assuming mini-batch
gradient descent) [1], as well as their enhanced interpretability, owing to their multi-linear nature.
The applicability and potential of TNs have been demonstrated through state-of-the-art performance
in tasks including multi-modal learning [2], compression of large-dimensional data [3], sequence to
sequence learning [4], anomaly detection [5] and theoretical analysis of neural networks [6], to name
but a few. However, a vast majority of those achievements have been in deterministic settings, yet
modern ML can greatly benefit from probabilistic tools. To fill this void, motivated by the appealing
properties of TNs, we introduce the Bayesian Tensor Network (BTN) model, a variational inference
TN framework for probabilistic supervised learning.

Contributions: The contributions of this work are threefold. First, we present a basic Mean-Field
Variational Inference approach for TN based supervised learning. Second, by taking advantage of the
multi-linear properties of TNs, we introduce a structured approach, where the learnable parameters
are not treated independently, but as a realization of a tensor variate Gaussian random variable [7].
We demonstrate that this interpretation allows for an efficient information sharing in the posterior
distribution. This is imposed by a Kronecker structure on the tensor mean and covariances, making
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their forms more flexible while simultaneously allowing for more accurate predictions, all at a
significantly reduced parameter complexity compared to the mean-field case. The advantages of
this novel framework are demonstrated through an example of a credibility interval construction
based on the multi-linear properties of TNs. We believe that this approach, coupled with domain-
dependent and physically relevant feature maps (basis functions), promises to provide meaningful
model interpretations without sacrificing model expressiveness.

Related Work: An exhaustive review of structured approaches for variational Bayesian neural
networks (BNNs) is out of the scope of this paper. However, we find it important to highlight the
following works which exhibit the closest relationships to our approach. The idea of treating model
parameters as a realization from a higher-order distribution in the context of variational Bayesian deep
learning was first introduced in [8], where the authors considered a structured matrix-variate Gaussian
posterior to model the posterior distribution of a BNN. Whereas their focus was on neural networks,
we consider models which are fully described in a TN form, which allows for a physically meaningful
treatment of the model parameters as a realization of a tensor-variate Gaussian posterior. Another
related work [9] develops a tensor-variate Gaussian Process Prior Variational Autoencoder, in the
context of learning latent representations, different from our focus on regression tasks. Furthermore,
the work in [9] considers neural networks and imposes a tensor structure on the latent space, while
our approach is concerned with a TN model and imposes structure on the model itself rather than
on the latent space. Finally, the data used in this work come in the form of standard feature vectors
as in a typical supervised learning context, rather than as multi-dimensional arrays. Furthermore,
[10] considers Bayesian priors on a TN and they employ the Laplace approximation on the posterior,
while [11] introduces a TN based method to efficiently capture the conditional probabilities of
multiple sets of events with polynomial complexity. Overall, to the best of our knowledge, this is the
first work to consider stochastic variational inference in the context of TN methods for supervised
machine learning, as well as the first work to consider structured posterior distributions that exploit
the multi-linear nature of TNs, making it possible to account for meaningful model interpretations.

Paper Organization: We first present the TN preliminaries necessary to follow this work in Section
2, followed by Mean-Field and Structured BTNs in Section 3, along with their corresponding learning
and inference algorithms. Finally, experimental results are given in Section 4, with the conclusions,
model limitations, and future research directions in Sections 5 and 6.

2 Preliminaries

2.1 Tensors and Tensor Networks

A real-valued tensor is a multidimensional array, denoted by a calligraphic font, e.g., X ∈ RI1×···×IP ,
where P is the order of the tensor, and Ip (1 ≤ p ≤ P ) the size of its pth mode. Matrices (denoted by
bold capital letters, e.g., X ∈ RI1×I2) can be seen as order-2 tensors (P = 2), vectors are denoted
by bold lower-case letters, e.g., x ∈ RI and can be seen as order-1 tensors (P = 1), and scalars
(denoted by lower-case letters, e.g., x ∈ R) are tensors of order P = 0. A specific entry of a tensor
X ∈ RI1×···×IP is given by xi1,...,iP ∈ R.

The following conventions for basic linear/multilinear operations are employed throughout the
paper. The outer product of two vectors a ∈ RI and b ∈ RJ is given by c = a ◦ b ∈ RI×J ,
with ci,j = aibj . The Kronecker product of two matrices A ∈ RI×J and B ∈ RK×L is denoted
by C = A ⊗ B ∈ RIK×JL, with c(i−1)K+k,(j−1)L+l = ai,jbk,l. The Hadamard product of two
order-P tensors, A ∈ RI1×···×IP and B ∈ RI1×···×IP is denoted by C = A~ B ∈ RI1×···×IP , with
ci1,...,iP = ai1,...,iP bi1,...,iP . Finally, the inner product of two order-P tensors A ∈ RI1×···×IP and
B ∈ RI1×···×IP is denoted by c = 〈A,B〉 ∈ R with c =

∑
i1,...,iP

ai1,...,iP bi1,...,iP .

A Tensor Network (TN) is a tensor architecture comprised of smaller-order core tensors which are
connected by tensor contractions, where each tensor is represented as a node, while the number of
edges that extend from a given node corresponds to its tensor order. Special instances of tensor
networks include those based on Tensor Decomposition (TD) methods, which approximate high-order,
large-dimension tensors via contractions of smaller core tensors, therefore drastically reducing the
computational complexity in tensor manipulation while preserving the data structure [12].
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Canonical Polyadic Decomposition (CPD) [13, 14] is a Tensor Decomposition which expresses a
tensor X ∈ RI1×···×IP as a sum of outer products of vectors a(1)r ,a

(2)
r , . . . ,a

(P )
r (i.e., rank-1 terms):

X =

R∑
r=1

a(1)r ◦ · · · ◦ a(P )
r =

R∑
r=1

©P
p=1a

(p)
r , (1)

where R is the CP rank of the tensor (equal to the standard matrix rank when P = 2). We can arrange
these vectors into P factor matrices A(p) = [a

(p)
1 , . . . ,a

(p)
R ] ∈ RIn×R, (1 ≤ p ≤ P ), which allows

the CPD to be expressed as a contraction of the identity tensor, I ∈ RI1×···×IP (super-diagonal values
being all one) with the so-formed factor matrices. This view allows for the CPD to be formulated as a
TN.

2.2 Tensor Networks for Supervised Learning

Consider a supervised learning task whereby each sample is represented through a set of P features. A
local feature mapping φ : R→ Rd is next applied to every feature, xp, with d as the local dimension
of the mapping. The choice of the feature map, φ, is flexible and application-dependent. The outer
product between the mapped feature vectors then yields

Φ(x) =©P
p=1φ(xp) ∈ Rd

P

, (2)

where RdP denotes R

P times︷ ︸︸ ︷
d× · · · × d. For one output (e.g., single-target regression or binary classifica-

tion), the prediction in (2) is given by

g(x) = 〈Φ(x),W〉, (3)

whereW ∈ RdP is the weight tensor, which comprises all model coefficients.

Remark 1: The size of the weight tensor,W , scales exponentially with the number of features and is
therefore computationally prohibitive to learn. To this end,W can be represented as a TN [15], to
make the number of parameters scale linearly with the number of features.

Depending on the nature of the task at hand, different TNs can be employed for the representation
of the weight tensor. In contrast to neural networks which comprise consecutive non-linear layers,
the only non-linearity in the proposed model arises from the non-linear feature maps, while all
other operations represent linear contractions. This way, it is possible to construct highly expressive,
bottom-up models with enhanced interpretability, starting from a well-defined feature mapping φ.

3 Variational Bayesian Tensor Networks

Training a deterministic tensor network amounts to learning appropriate values for the entries in the
TN-decomposed parameter tensor,W . In order to extend this framework to the Bayesian setting, we
treat model parameters as random variables, so that the training goal then becomes that of calculating
the posterior distribution of the weights given the training data, p(W|D). The posterior distribution
can be subsequently used for predictive purposes on unseen data, by averaging over the predictions of
each possible configuration of the model parameters, and weighted according to the learnt posterior
distribution. As is also the case with neural networks, the true posterior distribution is intractable; we
therefore resort to approximations, namely variational inference.

In variational learning, the true posterior distribution, p(W|D), is approximated by a learnable
tractable variational posterior, qθθθ(W|D). In the sequel, conditioning on D is removed from the nota-
tion for notational simplicity. Variational inference aims to learn the parameters θθθ that parameterize
the weight distribution, qθθθ(W), by minimizing the Kullback-Leibler (KL) divergence between the
true and variational posterior distributions. Following standard variational learning methodologies, it
is straightforward to show that

θθθ∗ = argmin
θθθ

KL
[
qθθθ(W)||p(W|D)

]
= argmin

θθθ
KL

[
qθθθ(W)||p(W)

]
− Eqθθθ(W)[log p(D|W)] (4)

3



Stochastic gradient descent can be used to minimize this cost. Denote the argument of the argmin
function in equation (4) by F(D,θθθ). Then, it can be approximated [16] through Monte-Carlo
sampling as

F(D,θθθ) ≈
N∑
i=1

log qθθθ(W(i))− log p(W(i))− log p(D|W(i)) (5)

whereW(i) is a sample from the variational posterior, qθθθ(W). The first term in (4) can be computed
either in a closed form as in the case of a tractable prior and variational posterior distributions, or
approximated through sampling, as a mean for gradient variance reduction.

3.1 The Mean-Field Approach

In the common mean-field approach, the weight posterior is approximated by a diagonal multivariate
Gaussian distribution, leading to mean-field Bayesian tensor networks (MF-BTN), whereby each
weight is treated as a separate univariate distribution and the learning procedure consists of learning a
separate mean and variance.

We omit the details of the training and inference algorithms since the procedure is outlined in [16].
This approach leads to a higher (double) parameter complexity compared to the deterministic ap-
proach, since a separate mean and variance are learnt for every weight. No difference in performance
was found between an approximation through sampling and using the closed form KL divergence
between the prior and variational posterior distributions in this case.

Even though this approximation allows for a tractable and fast inference over the weight distributions,
the independence assumption over the weights proves to be too restrictive [8]. To this end, a
structured approach that embarks upon the structural properties of TNs to enhance posterior flexibility
is introduced in the next section.

3.2 Tensor-Variate Structured Posterior

In the following, we provide the derivation for the case of CPD, used in our regression experiments.
The proposed method leads to Structured Posterior Bayesian Tensor Networks (SP-BTN).

Tensor Gaussian Distribution A random tensor, X ∈ RI1×I2×···×IN , exhibits a Gaussian distri-
bution, defined by the tensor mean,M ∈ RI1×I2×···×IN and mode-n covariance, R(n) ∈ RIn×In ,
if and only if its vector representation, x = vec(X ) ∈ RK , where K =

∏N
i=1 Ii, is distributed

according to [17]

x ∼ N

m,

1⊗
i=N

R(i)

 (6)

where m = vec(M).

Reinterpretation of the Weight Tensor Note that the learnable weights of a CPD-decomposed
weight tensorW form a 3rd order tensor. Indeed, we have P factor matrices, each with dimensionality
d × R, as defined1 in Section 2. Instead of considering every weight as being drawn from an
independent univariate Gaussian distribution, the weight structure of the CPD admits the following
reinterpretation. The parameters of a CPD-decomposed weight tensor,W , can be considered as a
single realization of a tensor-variate Gaussian distribution with tensor mean,M ∈ Rd×R×P , and
mode-n covariance, R(n) ∈ Rn×n, where n ∈ {d,R, P}.
When adapting the weight tensor reinterpretation of the variational learning framework, it can be
assumed that the variational posterior of the weight tensor is a tensor-variate Gaussian distribution.
Note that the parameters of the tensor-variate Gaussian cannot simply be estimated by e.g., maximum
likelihood estimation, as this is only possible with tensor-valued observations. In contrast, we here

1Note that in the case of CPD, even thoughW is originally a P-th order tensor, this is achieved through the
contraction of the factor matrices with the superdiagonal tensor as explained in Section 2. In this case, we can
work with P factor matrices, each d×R, which yields a 3rd order tensor
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deal with lower dimensional typical feature vectors and labels. The probability density function of
the tensor valued variational posterior is thus defined as

qθθθ(W) =
exp

[
− 1

2 (w −m)T (
⊗

i∈{d,R,P}R
(i))−1(w −m)

]
(2π)

dRP
2 det

1
2

[⊗
i∈{d,R,P}R

(i)
] (7)

where θθθ = {m,R(i)} denotes the trainable variational parameters.

Remark 2: A Kronecker structure on the mode-n covariances is imposed by the definition of the
tensor-variate Gaussian distribution. For computational tractability, we consider diagonal mode-
n covariances, so that the resulting global covariance matrix

⊗
i∈{d,R,P}R

(i) is also diagonal
which mitigates the computational bottleneck of inverting a dense covariance matrix. Futhermore,
diag

(⊗
i∈{d,R,P}R

(i)
)

=
⊗

i∈{d,R,P} diag
(
R(i)

)
, which allows us to employ only the diag-

onal part of the mode-n covariance matrices, thus further saving on the memory and time re-
sources. For clarity, we shall use the notation diag

(
R(d)

)
=
(
wd1 , w

d
2 , . . . , w

d
d

)T
, diag

(
R(R)

)
=(

wR1 , w
R
2 , . . . , w

R
R

)T
, and diag

(
R(P )

)
=
(
wP1 , w

P
2 , . . . , w

P
P

)T
. Since a ⊗ b = vec(a ◦ b), it

follows that
⊗

i∈{d,R,P}R
(i) =

(
wd1w

R
1 w

P
1 , w

d
1w

R
1 w

P
2 , . . . , w

d
dw

R
Rw

P
P

)
.

Remark 3: Assuming a separate variance for every weight amounts to having dRP parameters,
while the proposed assumption of Kronecker separability yields a linear scaling with (d+R+ P )
parameters. By virtue of Kronecker separability, the proposed approach therefore introduces inter-
weight information sharing at a greatly reduced parameter complexity.

Next, instead of considering a separate mean for every weight distribution, we impose a low rank
structure on the tensor mean,M, in the form

M =

MR∑
m=1

b(d)
m ◦ b(R)

m ◦ b(P )
m (8)

where MR denotes mean rank [7].

This approximation further reduces parameter complexity while preserving the expressiveness of
the posterior by introducing weight dependencies. More specifically, the proposed approximation
amounts to (d+R+P )MR parameters, in comparison to the dRP parameters in the mean-field case.
In practice, it was found that very low ranks were too restrictive, but after a relatively low number
(e.g, MR = 10), the posterior mean was flexible enough for efficient model learning.

Prior Distribution We have chosen the multivariate diagonal Gaussian distribution given by

p(W) = N (0, σ2IdRP ) (9)

as the prior distribution. In this work, we diverge from the approach in [16], where a scale mixture of
two Gaussian densities was suggested in order to a-priori cluster many weights around zero. Also,
TNs can become sensitive to initialization, especially for large P , due to the many matrix (for CPD)
or tensor (for the tensor train) multiplications, as has been previously pointed out in [1, 5]. In other
words, the final result can vanish or explode if every initialized matrix/tensor is too small or too
big. In practice we found that, in general, a normal distribution with standard deviation equal to 0.5
worked well for our experiments, but the issue was not completely eliminated (see Section 5).

Tensor Posterior Sampling For efficient stochastic variational inference, it is necessary to extend the
reparameterization trick [16] for the tensor-variate posterior distribution. In this case, sampling from
the posterior amounts to sampling random tensor noise, E ∈ Rd×R×P , from a standard Gaussian
distribution. A sample from the posterior is then obtained asW(i) =M+E ×Ld×LR×LP , where
Li denotes the Cholesky factor of the corresponding mode-n covariance matrix R(i), i ∈ {d,R, P},
and × denotes the mode-n product.

KL-Divergence between Tensor-Variate Gaussians It was empirically found that training stability
is significantly enhanced when using the closed-form KL divergence. To explicitly obtain the
KL-divergence between the prior and the variational posterior, we employ Equation (6) and the
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KL-divergence between two multivariate Gaussians, to yield

KL
[
qθθθ(W)||p(W)

]
=

=
1

2
[tr


 ⊗
i∈{d,R,P}

R(i)
p

−1 ⊗
i∈{d,R,P}

R(i)
q


+
(
mp −mq

)T  ⊗
i∈{d,R,P}

R(i)
p

−1 (mp −mq

)

− dRP + log
det
⊗

i∈{d,R,P}R
(i)
p

det
⊗

i∈{d,R,P}R
(i)
q

] (10)

The cost in (4) can now be minimized using gradient descent, with the expression in (10) for the
closed form KL-divergence and the proposed posterior given in (7).

Remark 4: The proposed probabilistic approach to learn the model parameters considers the weight
tensor as a realization of a tensor-variate Gaussian distribution. This makes it possible to induce
information sharing between weights, and at a significantly lower parameter complexity compared
to the mean-field case, while the flexibility of the tensor mean is controlled by the mean rank
hyperparameter.

4 Experiments

A polynomial mapping of features with unit norm was employed,

φ̂d(xn) =
1√∑d−1
k=0 x

2k
n

[
1, xn, x

2
n, . . . , x

(d−1)
n

]T
(11)

as suggested in [1]. This enhances training stability when a high local dimension is employed. Note
that no unit norm was used for the toy dataset since the ground truth local dimension was low (d = 4).

4.1 Mean Field vs Structured Posterior BTNs

As this is the first work to consider variational BTNs, we start with a brief "proof of concept"
experiment to establish if the so induced flexibility in the posterior distribution can efficiently enhance
model expressiveness at a reduced parameter complexity. To this end, we employed the standard
regression California Housing Dataset. We used the complete dataset for training, as our goal in
this experiment was to establish the expressiveness of the models based on their ability to fit an
outlier-rich and medium size dataset (20640 samples). Features and labels were standardized to zero
mean and unit variance, the mini-batch size was set to 128, and the Adam optimizer [18] with a
learning rate of 0.002 was used in training. Both models were trained over 1000 epochs to ensure
convergence.

The CPD rank was set to R = 20, and the local dimension to d = 75. The dataset contained P = 8
features with a total of 2dRP = 24000 parameters for the mean-field case. Regarding the structured
posterior, the model contained (d+R+ P )(MR + 1) parameters, a total of 103MR.

Figure 1 shows the training MSE in terms of the number of model parameters. Three important
conclusions can be made from this figure. First, observe that the training error of the SP-BTN drops
below that of MF-BTN after MR = 70 (corresponding to 7210 parameters), illustrating the desired
gains in expressiveness from the structured posterior at a significantly lower model complexity (7210
vs 24000 parameters). Secondly, after MR = 100, the training error reaches a plateau due to the
information bottleneck imposed by the low CPD rank. Finally, for a very low mean rank, the model
underfits since the coupling between weight means is too strong and inhibits efficient learning.

6



0 5000 10000 15000 20000 25000
Parameter Complexity

0.2

0.4

0.6

0.8

1.0

Tr
an

in
g 

M
SE

Mean Field
Structured Posterior

Figure 1: Training MSE as a function of model parameter complexity

4.2 Performance Evaluation over a Synthetic Dataset

The ability of the proposed Bayesian TN to provide uncertainty quantification was assessed over an
experiment based on toy data. The proposed MF- and SP-BTN models were examined on a simple
toy dataset that was used in [19], whereby 20 inputs were sampled from U [−4, 4] so as to construct
the target variable, yn = x3n + ε, where ε ∼ N (0, 9). Two low complexity models were examined at
data fitting, a MF-BTN network with R = 5 and 80 parameters overall, and a SP-BTN with R = 2,
MR = 10, and with 77 parameters overall. Figure 2 shows the corresponding predictive distributions.
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Figure 2: Predictive distributions for the toy dataset for MF-BTN (left) and SP-BTN (right). The
crosses represent the training points, while blue curves correspond to the true function, and green
curves to predictive mean functions. The grey areas designate the ±3 standard deviations around the
mean.

Observe that the MF-BTN underfitted due to the limited amount of datapoints, leading to high
predictive uncertainty. However, the MF-BTN was able to (approximately) learn the mean function,
in contrast to the corresponding BNN with factorized Gaussian [8]. This is likely due to the fact that
in this case the BTNs have an advantage due to the polynomial nature of both the true function and
the feature mapping.

Regarding the SP-BTN, it provided a realistic predictive distribution; for a visual comparison with
common BNN models, we refer the reader to [8]. It should be mentioned that due to the low number
of datapoints, the SP-BTN produced a rather high uncertainty in low data density areas, which was

7



higher than that of the corresponding BNNs, a result of the low rank regularization of TNs that
prevents overfitting [1].

Finally, inherent advantages of TNs, such as their interpretability stemming from their multi-linear
nature, can be demonstrated by the coefficient computation for each (transformed) feature interaction
through

∑
i1,...,iP

 P

~
k=1

w
(k)
ik

 (12)

where w
(k)
ik

denotes the weight in the P -th factor matrix and ik-th row, as described in [1]. By virtue
of the stochastic nature of the presented framework, it is now possible to compute credibility intervals
for individual coefficients. In this example, after model training, the estimated single regression
coefficient taking part in the model employed was 0.97± 0.05, which includes the ground truth value
(equal to 1).

4.3 Benchmark Regression Datasets

The next set of experiments employed benchmark UCI regression datasets [19]. The scores were
reported only for SP-BTN, as they were consistently higher than MF-BTN at a comparable parameter
complexity. The proposed SP-BTN was evaluated against the Bayes By Backprop (BBB) [16],
Variational Matrix Gaussian (VMG) [8], and functional BNN (fBNN) [20] models. Since regression
on non-sequential tasks was considered, the CPD was used for the representation ofW [1]. The BTN
models were trained until convergence with the Adam optimizer [18], at a learning rate of 0.001, and
a mini-batch size of 128. The simulations were conducted on a 2.9 GHz Intel Core i5 with an 8GB
RAM, with the runtime ranging between 0.2 and 0.8 seconds per epoch.

4.3.1 Small Scale Datasets

For a fair comparison between BTNs and BNNs, the BTN models were kept simple, with R = 10
and d = 10, while MR was ranging between 10 and 30, with higher values used in datasets where
MR = 10 turned out to be too restrictive (and thus underfit in the training set). These settings led
to parameter complexity similar to that of the BNNs considered (one hidden layer with 50 units, as
reported in [20]).

Each dataset was randomly split into the training and test sets, comprising respectively 90% and
10% of the data, and the procedure was repeated 20 times. Table 1 shows the mean and standard
deviations for the models considered. Data were normalized so that the input features and the targets
had zero mean and unit variance in the training set. The normalization on the targets was inversed
during prediction.

Table 1: Averaged test RMSE for small scale regression benchmarks.

Data BBB VMG fBNN SP-BTN

Wine 0.643± 0.012 0.63± 0.01 0.673± 0.014 0.6417± 0.011
Concrete 5.678± 0.08 4.89± 0.12 4.9355± 0.18 5.50± 0.23
Energy 0.565± 0.018 0.54± 0.02 0.412± 0.017 0.549± 0.2
Yacht 1.174± 0.086 0.71± 0.05 0.607± 0.068 0.5061± 0.091

4.3.2 Large Scale Datasets

For a fair comparison between BTNs and BNNs, values for R, d, and MR were chosen so as to
lead to similar parameter complexity as the BNNs considered (one hidden layer with 100 units, as
reported in [20]). The datasets were randomly split into 80% training, 10% validation, and 10% test
data, whereby the validation set was employed to tune the hyperparameters2. Data were normalized

2For Protein and Naval, R = 25, d = 25 and MR = 50. For GPU, R = 30, d = 30 and MR = 30. BTN
parameter complexity was similar with that of the compared BNNs

8



so that the input features and the targets had zero mean and unit variance in the training set. The
normalization on the targets was inversed during prediction. The experiments were repeated 5 times,
with the mean and standard deviation for different models shown Table 3.

Table 2: Averaged test RMSE for large scale regression benchmarks.

Data BBB fBNN SP-BTN

Protein 4.331± 0.033 4.326± 0.019 4.25± 0.012
Naval 0.01± 0.0 0.0± 0.0 0.0± 0.0
GPU 21.886± 0.673 19.50± 0.171 19.36± 0.212

Overall, it can be observed from Table 2 that the proposed BTN models exhibited comparable
performance to state-of-the-art BNNs, at a similar parameter complexity but with enhanced physical
intuition.

5 Limitations

It was empirically found that optimization of the TN models can run into numerical difficulties due to
the many multiplications involved, as also noted in [5] and [1], this issue is emphasized when many
features are present in the dataset at hand (more Hadamard products in our case). Indeed, this issue
did cause the convergence to be slow and rendered the optimized parameters sensitive to initialization,
and consequently a convergence to suboptimal values in some runs; such runs were excluded from
the results. An important future research direction thus concerns the optimization of the proposed
models. To this end, natural gradient optimization appears a promising direction that has the potential
to guide the optimization towards faster convergence. The low parameter complexity of the proposed
models makes this optimization scheme practical and will be an important part of our future work.

6 Conclusion

We have introduced variational inference for tensor networks, a novel framework for employing
compressed tensor network models in the Bayesian setting. After presenting a basic mean-field
approach, a structured model has been introduced that takes advantage of the multi-linear nature of
TNs to efficiently induce information sharing in the posterior distribution of the model weights. We
have shown that the so introduced structured Bayesian tensor networks not only yield competitive
results compared to popular Bayesian neural network models in benchmark regression datasets,
but also that the proposed framework exhibits enhanced physical interpretability. While this work
has focused on the regression paradigm, the BTN framework can be readily extended to other
domains, such as computer vision, through the appropriate modification of the tensor network used to
decompose the weight tensor (e.g., 2-D tensor networks for images).

Broader Impact

An immediate impact of our work is its potential to learn expressive models with enhanced inter-
pretability and the ability for uncertainty quantification. The broader impact, as well as the impact
arising from model failure and data bias is identical to those of supervised learning models in general.
We have not identified anyone that can be put at disadvantage from this work.
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A Large Scale Regression with Deeper Networks

In this appendix we experimented on large scale regression datasets with deeper networks. We
compare SP-BTN with BBB and fBNNs, with similar parameter complexity (5 hidden layers of 100
units, as described in [20]. In this case, we used R = 1000, d = 50 and MR = 50, and maintained
the same experimental setup as in section 4.3.2. Also in this setup, we observe that SP-BTNs produce
competitive results.

Table 3: Averaged test RMSE for large scale regression benchmarks using deeper networks.

Data BBB fBNN SP-BTN

Protein 3.684± 0.041 3.659± 0.026 3.94± 0.03
Naval 0.0± 0.0 0.0± 0.0 0.0± 0.0
GPU 5.136± 0.087 4.806± 0.116 4.79± 0.135
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