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Abstract

We consider the problem of structured tensor denoising in the presence of unknown
permutations. Such data problems arise commonly in recommendation system,
neuroimaging, community detection, and multiway comparison applications. Here,
we develop a general family of smooth tensors up to arbitrarily index permutations;
the model incorporates the popular block models and graphon models. We show
that a constrained least-squares estimate in the block-wise polynomial family
achieves the minimax error bound. A phase transition phenomenon is revealed
with respect to the smoothness threshold needed for optimal recovery. In particular,
we find that a polynomial of degree of m(m − 1)/2 is sufficient for accurate
recovery of order-m tensors, whereas higher degree exhibits no further benefits.
Furthermore, we provide an efficient polynomial-time Borda count algorithm that
provably achieves optimal rate under monotonicity assumptions. The efficacy of
our procedure is demonstrated through both simulations and Chicago crime date
analysis.

1 Introduction
Higher-order tensor datasets are rising ubiquitously in modern data science applications, for instance,
recommendation systems [3], social networks [19], genomics [23], and neuroimaging [29]. Tensor
structure provides effective representation of data that classical vector- and matrix-based methods
fail to capture. One example is music recommendation system that records ratings of songs from
users on different contexts [3]. This three-way tensor of user×song×context allows us to investigate
interaction of users and songs under a context-specific manner. Another example is network analysis
that studies the connection pattern among nodes. Pairwise interactions are often insufficient to capture
the complex relationships, whereas multi-way interactions improve understanding the networks in
molecular system [18] and computer vision [1]. In both examples, higher-order tensors represent
multi-way interactions in an efficient way.
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Figure 1: (a): Illustration of order-m d-dimensional permuted smooth tensor models with m = 2.
(b): Regimes of mean square error (MSE) depending on the smoothness α and tensor order m. Bold
dots show the critical smoothness α∗ and tensor order m.
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Tensor estimation problem cannot be solved without imposing structure. We study a class of structured
tensors, permuted smooth tensors of the following form:

Y = Θ ◦ π + noise, where Θi1,...,iK = f(i1, . . . , im), (1)

where π : [d]→ [d] is an unknown latent permutation, Θ is an unknown order-m d-dimensional signal
tensor, and f is an unknown multivariate function with smoothness index α > 0; see Figure 1(a)
for an illustration. Our primary goal is to estimate a permuted smooth signal tensor from a noisy
observation.

Related work and our contributions. The estimation problem of (1) falls into the general category
of structured learning with latent permutation, which has recently observed a surge of interest.
Models involving latent permutations include graphon [4, 9, 15], stochastic transitivity models [5, 21],
statistical seriation [7, 12], graph matching [6, 17], and crowd labeling [22]. Most of theses methods
are developed for matrices. The tensor counterparts, however, are far less well understood. Table 1
summarizes the related works on tensor learning with latent permutations.

Pananjady et al [20] Balasubramanian [2] Li et al [16] Ours∗
model structure monotonic Lipschitz Lipschitz α-smoothness

minimax lower bound
√

× ×
√

error rate for order-3 tensors d−1 d−6/5 d−1 d−2

polynomial algorithm
√

×
√ √

Table 1: Comparison of our results with previous works. ∗We list here only the result for infinitely smooth
order-3 tensors. Our results allow general tensors of arbitrary order m and smoothness α; See Theorems 1 and 3.

The primary goal of our work is to provide statistical and computational estimation accuracy for the
permuted smooth tensor model (1). We summarize our major contributions below.
(a) We develop a general permuted α-smooth tensor model for an arbitrary smoothness index α > 0.
In contrast to earlier work [2, 16] that focuses only on α = 1, we fully establish the statistically
optimal error rate and its dependence on tensor order, dimension, and smoothness index.
(b) We discover an intriguing phase transition phenomenon with respect to the smoothness threshold
needed for optimal tensor recovery in model (1). The critical threshold α∗ (defined in Theorem 1 and
3) characterizes two distinct error dependence behaviors on the smooth index α. We proved that the
error decreases with α in the range α < α∗, whereas the error is a constant of α in the range α > α∗.
Figure 1(b) plots the critical smoothness α∗ as a function of tensor order m. These results are distinct
from the matrix counterparts [8, 15, 9], thereby highlighting the fundamental challenges with tensors.
(c) We provide an efficient polynomial-time Borda count algorithm that provably achieves optimal
rate under monotonicity assumptions. Simulation and data studies demonstrate the competitive
performance of our algorithm.
Notation. We use [d] = {1, . . . , d} for d-set with d ∈ N+. For a set S, |S| denotes its cardinality
and 1S denotes the indicator function. For positive two sequences {an}, {bn}, we denote an . bn
if limn→∞ an/bn ≤ c for some constant c > 0, and an � bn if c1 ≤ limn→∞ an/bn ≤ c2 for
some constants c1, c2 > 0. Given number a ∈ R, the floor function bac is the largest integer no
greater than a, and the ceiling function dae is the smallest integer no less than a. We use O(·) to
denote the big-O notation, Õ(·) the variant hiding logarithmic factors. An event A is said to occur
with high probability if P(A) tends to 1 as the tensor dimension d → ∞. Let Θ ∈ Rd×···×d be
an order-m d-dimensional tensor, and π : [d] → [d] be an index permutation. We use Θi1,...,im to
denote the tensor entry indexed by (i1, . . . , im), and use Θ ◦ π to denote the permuted tensor such
that (Θ ◦ π)i1,...,im = Θπ(i1),...,π(im) for all (i1, . . . , im) ∈ [d]m. We use S(d) = {π : [d]→ [d]} to
denote all possible permutations on [d].

2 Smooth tensor model with unknown permutation
Suppose we observe an order-m d-dimensional symmetric data tensor from the following model,

Y = Θ ◦ π + E , (2)

where π : [d] → [d] is an unknown latent permutation, Θ ∈ Rd×···×d is an unknown symmetric
signal tensor under certain smoothness (to be specified in next paragraph), and E is a symmetric
noise tensor consisting of zero-mean, independent sub-Gaussian entries with variance bounded by σ2.
For simplicity of presentation, we focus on symmetric tensors in the main paper; our models and
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techniques easily generalize to non-symmetric tensors. Here, we do not assume identical distributions
among entries in E . In particular, we allow the error variance to depend on mean. Therefore, our
model (1) allows a wide range of data types including Gaussian and Bernoulli tensors.

We now describe the smooth model on the signal Θ. Assume that there exists a multivariate function
f : [0, 1]m → R underlying the signal tensor, such that

Θi1,...,im = f

(
i1
d
, . . . ,

im
d

)
. (3)

Assume the generating function f is in the α-Hölder smooth family.
Definition 1 (α-Hölder smooth). A function f : [0, 1]m → R is α-Hölder smooth, denoted as
f ∈ H(α), if there exists a polynomial Pbαc(x− x0) of degree bαc, such that

|f(x)− Pbαc(x− x0)| ≤ C‖x− x0‖α∞, (4)

for all x,x0 ∈ [0, 1]m and a universal constant C > 0.

Hölder smooth function class is one of the most popular function classes considered in the nonpara-
metric regression literature [15, 9]. In addition to the function classH(α), we also define the smooth
tensor class based on discretization (3),

P(α) =
{

Θ ∈ Rd×···×d : Θ(ω) = f
(ω
d

)
for all ω = (i1, . . . , im) ∈ [d]m and f ∈ H(α)

}
.

Combining (2) and (3) yields our proposed permuted smooth tensor model. The generating process is
visualized in Figure 1(a) for the case m = 2 (matrices).

We give two concrete examples to show the applicability of our permuted smooth tensor model.
Example 1 (Four-player game tensor). Consider a four-player board game. Suppose there are in
total d players, among which all combinations of four have played against each other. The game
results are naturally summarized as an order-4 (asymmetric) tensor, with entries encoding the winner
of four-player games. Our model is then given by

E(Yi1,...,i4) = P(user i1 wins over (i2, i3, i4)) = f

(
π(i1)

d
, · · · , π(i4)

d

)
.

In this setting, we can interpret the permutation π as the unknown ranking among d players, and the
function f the unknown four-players interaction. Operationally, players with similar ranking would
have similar performance encoded by the smoothness of f .
Example 2 (Co-authorship networks). Consider co-authorship networks. Suppose there are in total
d authors. We say there exists a hyperedge between nodes (i1, . . . , im) if the authors i1, . . . , im have
co-authored at least one paper. The resulting hypergraph is represented as an order-m (symmetric)
adjacency tensor. Our model is then expressed as

E(Yi1,...,im) = P(authors i1, . . . , im co-authored) = f

(
π(i1)

d
, · · · , π(im)

d

)
.

In this setting, we can interpret the permutation π as the affinity measures of authors, and the function
f represents the m-way interaction among authors.

3 Block-wise tensor approximation
Our general strategy for estimating the signal tensor is based on the block-wise tensor approximation.
We first introduce the tensor block model [24, 11]. Then, we extend this model to the block-wise
polynomial approximation.

3.1 Tensor block model
The tensor block model describes a checkerbroad pattern in the signal tensor. Specifically, suppose
that there are k clusters in the tensor dimension d, and the clusters are represented by a clustering
function z : [d]→ [k]. Then, the tensor block model assumes that signal tensor Θ ∈ Rd×···×d takes
values from a mean tensor S ∈ Rk×···×k according to the clustering function z:

Θi1,...,im = Sz(i1),...,z(im), for all (i1, . . . , im) ∈ [d]m. (5)
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A tensor Θ satisfying (5) is called a block-k tensor. The tensor block model has shown great success
in discovering hidden group structure in many applications including hypergraph clustering [14],
collaborative filtering [28] and signal dehe ection in 3D/4D imaging [27]. Despite its popularity
and great applicability, the tensor block models cannot describe delicate structure of the signal
tensor when the tensor dimension d is very large. This parametric model aims to explain data with
a finite number of blocks; this approach is useful when the sample outsizes the parameters. Our
nonparametric models (3), on the other hand, use infinite number of parameters to allow growing
model complexity as sample increases. Therefore, we shift the goal of tensor block model from
discovering hidden group structure to approximating the generative process of the function f in (3).
Thus, the number of blocks k should be interpreted as a resolution parameter (i.e., a bandwidth) of
the approximation similar to the notion of number of bins in histogram and polynomial regression.

3.2 Block-wise polynomial approximation
The tensor block model (5) can be viewed as a discrete version of piece-wise constant function with
α = 0 in (2). This connection motivates us to use block-wise polynomial tensors to approximate
α-Hölder functions. Now we extend (5) to block-wise polynomial models. For a given block number
k, we use z : [d]→ [k] to denote the canonical clustering function that partitions [d] into k clusters,

z(i) = dki/de, for all i ∈ [d].

The collection of inverse images {z−1(j) : j ∈ [k]} consists of disjoint and equal-sized subsets in
[d], and we have ∪j∈[k]z

−1(j) = [d] by the construction. We denote Ek as the m-way partition as a
collection of km disjoint, equal-sized blocks in [d]m, such that

Ek = {z−1(j1)× · · · × z−1(jm) : (j1, . . . , jm) ∈ [k]m}.
We propose to approximate the signal tensor Θ in (3) by degree-` polynomial tensor within each
Ek-block. Specifically, we use B(k, `) to denote the class of block-k, degree-` polynomial tensors,

B(k, `) =

{
B ∈ (Rd)⊗m : B(ω) =

∑
∆∈Ek

Poly`,∆(ω)1{ω ∈ ∆} for all ω ∈ [d]m
}
,

where Poly`,∆(·) denotes a degree-` polynomial function in Rm. Notice that degree-0 polynomial
block tensor reduces to the tensor block model (5). We genealized the tensor block model to degree-`
polynomial block tensor, in a way that is analogous to the generalization from k-bin histogram to
k-piece-wise polynomial regression in nonparametric statistics [25].

Smoothness of the function f in (3) turns out to play an important role in the block-wise polynomial
approximation. The following lemma explains the role of smoothness in the approximation.
Lemma 1 (Tensor block approximation). Suppose Θ ∈ P(α). Then, for every block number k ≤ d,
and degree ` ∈ {0} ∪ N+, we have the approximation error

inf
B∈B(k,`)

1

dm
‖Θ− B‖2F .

m2

k2 min(α,`+1)
.

This theorem implies that we can always find block-wise polynomial tensor close to the signal tensor
generated from α-Hölder smooth function f .

4 Fundamental limits via least-squares estimation
We propose two estimation methods based on the block-wise polynomial approximation. We first
introduce a statistically optimal but computationally infeasbile least-squares estimator. The least-
squares estimation serves as statistical benchmark because it achieves the minimax lower bound.
In Section 5, we will present a polynomial-time algorithm with provably same optimal rates under
monotonicity assumptions.

We propose the least-squares estimator for the signal tensor and the permutation (Θ, π) by minimizing
the Frobenius loss under block-k, degree-` polynomial tensor family B(k, `),

(Θ̂LSE, π̂LSE) = arg min
Θ∈B(k,`), π∈S(d)

‖Y −Θ ◦ π‖F . (6)

The least-squares estimator (Θ̂LSE, π̂LSE) depends on two tuning parameters: the number of blocks k
and the polynomial degree `. The optimal choice (k∗, `∗) is provided in our next theorem. The result
establishes the upper bound for the mean squared error of the least square estimator (6).
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Theorem 1 (Least-squares estimation error). Consider the order-m (m ≥ 2) permuted smooth tensor
model (2) with Θ ∈ P(α). Let (Θ̂LSE, π̂LSE) denote the least-squares estimates with a given (k, `) in
(6). Then, the estimator Θ̂LSE ◦ π̂LSE satisfies

1

dm
‖Θ̂LSE ◦ π̂LSE −Θ ◦ π‖2F .

m2

k2 min(α,`+1)
+
km(`+m)`

dm
+

log d

dm−1
, (7)

with very high probability. In particular, setting `∗ = min(dαe,m(m − 1)/2) − 1 and k∗ =

dd
m

m+2min(α,`∗+1) e yields the bound as

(7) .

{
d−

2mα
m+2α when α < m(m−1)

2 ,
log d
dm−1 when α ≥ m(m−1)

2 .

We discuss the asymptotic error rates as d→∞ while treating the tensor order m and smoothness α
fixed. The least square estimation error has two sources of error: the nonparametric error d−

2mα
m+2α

and the clustering error log d/dm−1. When the function f is smooth enough, estimating the function
f becomes relatively easier compared to estimating the permutation π. This intuition coincides with
the fact that the clustering error dominates the nonparametric error when α ≥ m(m− 1)/2.

We now compare our results with existing work in the literature. Based on Theorem 1, the best rate is
obtained with the choice of (`∗, k∗) = (0, dd

1
α∧1+1 e) in the matrix case (m = 2). This block-wise

constant approximation and convergence rate reduce to the results in [8, 15]. Therefore, the least
square estimation achieves the minimax optimal rate in matrix case. Furthermore, we solve the
conjectured optimal convergence rate in [2] for higher order tensor case (m ≥ 3). This improvement
stems from polynomial tensor approximation in Lemma 1. The work in [2] considers only the
block-wise constant approximation (` = 0). This restriction results in sub-optimality because the
optimal degree `∗ is shown to be greater than 0 for higher-order tensors. For example, order-3
α-smooth tensors have the optimal degree and block size as (`∗, k∗) = (2, dd1/3e) for all α ≥ 2.
This result shows the clear difference from matrices and highlights the challenges with tensors.

We now show that the upper bound of Theorem 1 is not only minimax optimal for the matrices but
also for higher-order tensors. The result is based on information-theoretical analysis that combines
the minimax rate for nonparametric and permutation estimation. Our minimax lower bound applies to
all estimators including, but not limited to, least square estimator and all polynomial-time estimators.
Theorem 2 (Minimax lower bound). For any given α ∈ (0,∞), the estimation problem based on
model (1) obeys the minimax lower bound

inf
(Θ̂,π̂)

sup
Θ∈P(α),π∈S(d)

P
(

1

dm
‖Θ ◦ π − Θ̂ ◦ π̂‖2F & d−

2mα
m+2α + d−(m−1) log d

)
≥ 0.8.

We see that the lower bound matches the upper bound in Theorems 1. Therefore, the least square
estimator (6) is statistically optimal.

5 An adaptive and computationally feasible procedure
At this point, we should point out that computing the least square optimizer (Θ̂LSE, π̂LSE) in (6) with
polynomial-time algorithm is unknown. We suspect that the algorithm for (6) may be computation-
ally intractable. In this section, we propose an efficient polynomial-time Borda count algorithm.
Furthermore, we show that Borda count estimator actually achieves the same convergence rate as the
minimax lower bound under the β-monotonicity condition.

5.1 Borda count algorithm
We first introduce β-monotonicity for the generating functions.
Definition 2 (β-monotonicity). A function f : [0, 1]m → R is called β-monotonic, denoted as
f ∈M(β), if (

i− j
d

)1/β

≤ g(i)− g(j), for all i > j ∈ [d], (8)

where we define g(i) = d−(m−1)
∑

(i2,...,im)∈[d]m f
(
i
d ,

i2
d , . . . ,

im
d

)
for all i ∈ [d].
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This β-monotonicity condition can be viewed as an extension of the strict monotonic degree condition
in binary-valued networks [4] to general setting. Consider the hypergraph example where the
observed tensor Y is the adjacency tensor representing the connectivity among d-nodes. Then, the
function g is the degree function of the nodes. Our β-monotonicity condition is also closely related
to isotonic functions [10, 20] which assume the coordinate-wise monotonicity, i.e., f(x1, . . . , xd) ≤
f(x′1, . . . , x

′
d) when xi ≤ x′i for i ∈ [d].

This β-monotonicity condition allows us to estimate the permutation π in polynomial-time complexity.
Before presenting the theoretical guarantees, we provide the intuition here. The parameter β measures
the difficulty of the problem for estimating the permutation π. Consider the noisy observation Y in
(1). We define the scores function τ : [d]→ R as

τ(i) =
1

dm−1

∑
(i2,...,im)∈[d]m

Yi,i2,...,im .

Then, the permuted score function τ ◦ π−1 is equivalent to the function g in (8) for the noiseless case.
Therefore, we can find an estimate π̂ that makes the permuted score function τ ◦ π̂−1 monotonically
increasing. Notice that the estimated permutation π̂ could be different from the oracle permutation
π due to the noise. We find that the larger β guarantees the sharper consistency of π̂. The large
β implies the large gaps of |g(i) − g(j)| for i 6= j ∈ [d]. Therefore, we obtain similar ordering
of {τ(i)}di=1 before and after the addition of the noise. This intuition is well represented by the
following lemma.
Lemma 2 (Permutation error). Let π̂ be the permutation that makes the permuted score function
τ ◦ π̂−1 monotonically increasing. Then, we have

Loss(π, π̂) :=
1

d
max
i∈[d]
|π(i)− π̂(i)| .

(
σd−(m−1)/2

√
log d

)β
,

with high probability.

Now we introduce a Borda count estimator that consists of two stages. The full estimation procedure
is illustrated in Figure 2.

Sorting stage: The purpose of the sorting is to rearrange the observed tensor Y so that the score
function τ of sorted tensor is monotonically increasing. We define a permutation π̂BC such that

τ((π̂BC)−1(1)) ≤ · · · ≤ τ((π̂BC)−1(d)). (9)

Then, we obtain a sorted observation Ỹ ,

Ỹi1,...,im = Y(π̂BC)−1(i1),...,(π̂BC)−1(im),

for all (i1, . . . , im) ∈ [d]m. An example of sorted observation is shown in Figure 2.

Block-wise polynomial approximation stage: Given degree `, we estimate the degree-` polynomial
block tensor based on the sorted observation Ỹ solving the following optimization problem,

Θ̂BC = arg min
B∈B(k,`)

‖Ỹ −Θ‖F . (10)

The estimate Θ̂BC depends on two tuning parameters: the number of blocks k and polynomial degree
`. The optimal choice of (k∗, `∗) is provided in Theorem 3. Notice that the least square estimation
in (6) requires combinatoric search for the permutation resulting in exponential time complexity.
However, (10) only requires to estimate the degree-` polynomial block tensor. Therefore, this step
easily reduces to a degree-` polynomial regression problem within each block Ek.

5.2 Computational and statistical complexity
The complexity of the Borda count algorithm can be computed separately in each stage. In the sorting
stage, computing the score function τ requires O(dm−1) additions while sorting the τ(1), . . . , τ(d)
takes about O(d log d) comparisons. In block-wise polynomial approximation stage, we compute km
different degree-` polynomial tensors. For each degree-` polynomial tensor, O((d/k)m`) arithmetic
operations are needed. Thus, the second step requires O(dm`) arithmetic operations. Combining
these two steps yields the total complexity at most O(dm log d).

We show the consistency of the signal tensor estimation based on Lemma 1-2.
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Observation Sorted observation Polynomial approximation True signal

Figure 2: Procedure of Borda count estimation. We first sort the tensor entries using the proposed
procedure. Then, we estimate the signal tensor using block-k degree-` polynomial approximation.

Theorem 3 (Estimation error for Borda count). Suppose that the signal tensor Θ is generated as in
(3) with f ∈ H(α) ∩M(β). Let (Θ̂BC, π̂BC) be the Borda count estimator in (9)-(10) with a given
(k, `). Then, for every k ≤ d and degree ` ∈ N≥0, we have

MSE(Θ̂BC ◦ π̂BC, Θ ◦ π) .
m2

k2 min(α,`+1)
+
km(`+m)`

dm
+

(
log d

dm−1

)βmin(α,1)

, (11)

with high probability.

The three terms in the estimation bound (11) correspond to approximation error (Lemma 1), non-
parametric error (Theorem 1), and permutation error (Lemma 2), respectively. We find that the
Borda count estimator achieves the same minimax-optimal rate as the least-squares estimator for
sufficiently smooth tensors under Lipschitz score condition β = 1. The least-squares estimator
requires a combinatoric search with exponential-time complexity. By contrast, the Borda count
estimator is polynomial-time solvable. Therefore, Borda count algorithm enjoys both statistical
accuracy and computational efficiency.

6 Numerical comparisons
We simulate symmetric order-3 d-dimensional tensors based on the permuted smooth tensor model (3)
with function f in Table 2. Notice that considered functions cover a reasonable range of model
complexities from low rank to high rank. We generate the entries of the noise tensor i.i.d. from
Gaussian distribution N(0, 0.52). The permutation π is randomly sampled from all permutations
from [d] to [d]. Throughout all experiments, we evaluate the accuracy of the estimation by mean
square error (MSE) = d−3‖Θ ◦ π − Θ̂ ◦ π̂‖2F across nsim = 20 replications.

Table 2: Smooth functions in simulation. We define the numerical CP/Tucker rank as the minimal
rank r for which the relative approximation error is below 10−4. The reported rank in the table is
estimated from a 100× 100× 100 signal tensor generated by (3).

Model ID f(x, y, z) CP rank Tucker rank
1 xyz 1 (1, 1, 1)
2 (1 + exp(−3x2 + 3y2 + 3z2))−1 9 (4, 4, 4)
3 exp

(
−max(x, y, z)−

√
x−√y −

√
z
)

≥ 100 (90, 90, 90)

The first experiment examines the impact of the block number k and degree of polynomial ` for the
approximation. We fix the tensor dimension d = 100, and vary the number of blocks k ∈ {1, . . . , 15}
and polynomial degree ` ∈ {0, 1, 2, 3}. Figure 3 demonstrates the trade-off in accuracy determined
by the number of groups for each polynomial degree. The results are consistent to our bias-variance
analysis in Theorem 1. While a large block number k provides less biased approximation, this large k
renders the signal tensor estimation difficult within each block due to small sample size. In addition,
we find that degree-2 polynomial approximation with the optimal k gives the smallest MSE among all
considered polynomial approximation. These two observations are well explained by our theoretical
results where the optimal number of blocks and polynomial degree are (O(dd3/7e, 2).

The second experiment compares our method (Borda Count) with several popular alternative methods:
(a) Spectral method (Spectral) [26] that performs universal singular value thresholding [5] on the
unfolded tensor; (b) Least square estimation (LSE) [2], which solves the optimization problem (6)
with constant block approximation (` = 0) [8]; (c) Our Borda Count algorithm. We choose degree-2
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Figure 3: MSE comparison versus the number of blocks for different polynomial approximation.
Panels a-c show the results under the models 1-3 respectively.

polynomial approximation as our theorems suggested, and vary tensor dimension d ∈ {10, . . . , 100}
under each model specification. We choose the block number for Borda Count and LSE, which
achieves the best performance based on the intuition in our theorems and Figure 3. Similarly, we set
the threshold value that obtains the best performance for Spectral.
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Figure 4: MSE comparison of different methods versus tensor dimension. Panels a-c show the results
under models 1-3 respectively.

Figure 4 shows that our algorithm Borda Count achieves the best performance in all scenarios as
the tensor dimension increases. The poor performance of Spectral can be explained by the loss of
multilinear structure in the tensor unfolding procedure. The sub-optimality of LSE is possibly due to
its limits in both statistics and computations. Statistically, our theorems have shown that constant
block approximation has sub-optimal rates compared to polynomial approximation for higher-order
tensors. Computationally, the least square optimization (6) is highly non-convex and computationally
unstable. The outperformance of Borda count demonstrates the efficacy of our method.

7 Application to Chicago crime data
Chicago crime dataset consists of crime counts reported in the city of Chicago, ranging from January
1st, 2001 to December 11th, 2017. The observed tensor is an order-3 tensor with entries representing
the log counts of crimes from 24 hours, 77 community areas, and 32 crime types. We apply our Borda
Count method to Chicago crime dataset. Because the data tensor is asymmetric, we allow different
number of blocks across the three modes. Cross validation result suggests the (k1, k2, k3) = (6, 4, 10),
representing the block number for crime hours, community areas, and crime types, respectively.

We first investigate the four clustered community areas obtained from our Borda Count algorithm.
Figure 5(b) shows the four areas overlaid on a map of Chicago. Interestingly, we find that the clusters
conform the actual locations even though our algorithm did not take any geographic information such
as longitude or latitude as inputs. In addition, we compare the cluster patterns with benchmark results
based on homicides- and shooting incidents-maps in Chicago shown in Figure 5(a). We find that
our clusters share similar geographical patterns with Figure 5(a). The benchmark Figure 5(a) covers
only homicides and shooting incidents in 2020, whereas our result in Figure 5(b) considers 32 crime
types across 2001-2017. The results demonstrate the power of our approach in detecting meaningful
pattern from tensor data.

Then, we examine the denoised signal tensor obtained from our method and analyze the trends
between crime types and crime hours by the four community areas in Figure 5(b). Figure 6 shows the
averaged log counts of crimes according to crime types and crime hours by four areas. We find that
the major difference among four areas is the crime rates. Area 4 has the highest crime rates, and the
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Area 1
Area 2
Area 3
Area 4

SOURCES: Our calculation

Four areas learned from 
Chicago Crime data
using Borda Count Estimation

(a) (b)

Figure 5: Chicago crime maps. Figure(a) shows homicides and shooting incidents in community
areas in Chicago. This figure is from Chicago Tribune article in 2020 [13]. Figure(b) shows the four
areas estimated by our Borda Count algorithm.

crime rates monotonically decrease from Area 4 to Area 1. The variation in crime rates across hour
and type, nevertheless, exhibits similarity among the four areas. For example, Figure 6 shows that the
number of crimes increases hourly from 8 p.m., peaks at night hours, and then drops to the lowest
at 6 p.m. The identified similarities and differences among the four community areas highlight the
interpretability of our method in real data.
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Figure 6: Averaged log counts of crimes according to crime types, hours, and the four areas estimated
by our Borda Count algorithm. We plot the estimated signal tensor entries averaged within four areas
in the heatmap.

Finally, we compare the block-wise constant approximation versus block-wise degree-2 polynomial
approximation. We assess the goodness-of-fit by considering the hypothesis testing

H0 : Θ is a block-wise constant tensor vs. H1 : Θ is a block-wise polynomial degree-2 tensor.

Notice that the class of block-wise constant tensors is nested within that of block-wise polynomial
degree-2 tensors. Therefore, we perform a F-test considering the degree of freedom of each model.
The degree of freedom of H0 is the number of total blocks, 6 × 4 × 10. The degree of H1 is
10 × 6 × 4 × 10 because degree-2 polynomials have 10 times more coefficients than the constant
block model. The obtained F-statistics from Chicago crime dataset is 19.63 with p-value is < 10−3.
The result provides the significant evidence for the validity of the polynomial approximation. We
emphasize that our method does not necessarily assume the block structure. We present F-test
result as an evidence supporting our premises that permuted smooth tensor model with polynomial
approximation performs better than common tensor block models in this application.

8 Conclusion

We have developed permuted smooth tensor model and estimation methods with theoretical guarantees.
The efficacy of our procedure is demonstrated through both simulations and analysis of Chicago
crime dateset.
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