CODEE: A TENSOR EMBEDDING SCHEME FOR BINARY CODE SEARCH

Jia Yang', Cai Fu', Xiao-Yang Liu?, Heng Yin3,Pan Zhou’

"Huazhong University of Science and Technology, Wuhan, China;
2Columbia University, New York, USA; 3University of California, Riverside, USA.

Introduction

Binary code search has recently emerged as a pop-
ular topic for solving software security problems,

Basic Black Embedding

We combine control-flow graph structural information
and semantic information of the tokens to generate

Application 1: Code Search
across CPU architectures

node2vecWalk random walks method.

2. Normalize the serialized codes by defining some
specific notations.

3. Train the skip-gram model with negative sampling
to obtain the token embedding.

such as finding clone code injection, detecting soft- high-quality basic block embeddings by loss function: Recall ARM vs. x86-64 ARMvs. MIPS [MIPS vs. x86-64
P : - :] . Baselines | Codee Gemini | Safe | Codee | Gemini| Safe Codee Gemini
ware plagiarism. Given a target binary function, n OpenSSL 0.843 |0.546 0.788 0.848 0549 |- | 0.718 0.728
the binary code search retrieves top-K similar func- min T, — Z 1S; — CHC,||2 + M~ Z a;;log p(j4)). Coreutils | 0.745 0.740 |0.772/0.745 |0.720 0.781 |0.746
tions in the repository. Searching binary code is C . : e Lt ibgmp 10.979 10.847 |0.894/0.975 |0.787 0.987 |0.847
. . L 1=1 JEN(i) libcurl 0.836 |0.600 |0.784 0.682 0.536 0.710 0.510
particularly challenging due to large variations of Average |0.851 0.683 |0.810/0.813 0.648 |- |0.799 0.708
compiler tool-chains and options and CPU architec- Basic Block Embedding recision| ARMYS. x80.54 | AOMus MIES MITS vs. x80.04
. . . . aselines odaee emini | saie odee emini | sadie | ubodaee emini
tures, as well as thousands of binary codes. In Input: adjacent matrix of CFG: A, basic block fea- OpenSSL [0.937 0.758 |0.8850.904 |0.724 |- | 0.858 0885
this work, we present an unsupervised tensor em- ture matrix: B, affinity matrix: S. fbmeut”s 8-325 gggg g-g;g g-ggg 8;2;‘ g-g;; gggg
bedding scheme, Codee, to carry out similar code Output: Basic block embedding matrix: C*. .:bS{};F 0.845 0686 0.798 0.789 |0.648 0.772 0.650
search efficiently and accurately at the binary func- Initiation: C" « first d right singular vectors of B. Average |0.892 [0.775 |0.850/0.873 0.746 0.855 |0.791
tion level. Compared with other cross-platform and 7' =0,H"=C'
cross-optimization-level code search schemes, ex- fort=0,1,2,...,7T — 1: f//
perimental results show that our scheme achieves fori=1,2,....n: ol
higher average search accuracy, shorter feature vec- Update C!*! using Eq. (1), //M
tors, and faster feature generation performance us- Obtain C'™!, where C!*! is i-th column of C!*, - _
iIng four datasets. for:=1,2,....n: | (T o oo L T O
Update H§+1 USing Eq. (2), top-K False Positive Rate
Obtain H'*!, where H.™ is i-th column of H'™,
Scheme Overview ()
Application 1: Code Search
: : : : t t t t
Given a binary function, the code search task is to - C2H'Si + A) jeny aiH + p(H; — Zj) across Optimization Levels
find similar functions in the repository, and achieve Lo 2H!(HH)H 4 pI
high accuracy and high efficiency. To quickly and ac- AT o iy Hies (H'C) (1)
curately search binary codes (e.g., a function), we JENG) W37y exp (HETC SrimEation 50 ve 03
seek to map each function into a low-dimensional 2H!(H')™ + pl Recall
L Baselines | Codee | Asm2Vec | DeepBinDiff | Gemini | Safe
leature vector. Specn‘lcall)_/, our Schem_e follows four 2CHIS, +)\ Z<Z. VB ainz- + p(H: — Z) OpenSSL| 0.809 | 0.790 0.778 | 0.774 |0.799
steps: (1) Token embedding generation based on H = mﬂ RV, Coreutils | 0.712 | 0.670 0.623 | 0.780 0.768
NLP technique; (2) Basic block embedding gen- 20 (C) ol 2) bgmp | 0.79 | 0810 | 0720 | 0.889 0907
_] A\ Sy Ciexp ((CFFHPHLY) libcurl | 0.798 | 0.720 0.714 | 0.672 [0.792
eration based on network representation tech- Z(@',j)eE Qi S exp (CT)TH)) Average | 0.825 | 0.748 0.709 0.779 10.817
nique; (3) Function embedding based on tensor 2CHL(CH)H 1 T Optimization OR1 VS-”02
. - . eca
computatlon, (4) Bmary code search using LSH. Baselines | Codee | Asm2Vec | DeepBinDiff | Gemini | Safe
OpenSSL| 0.990 | 0.971 0.846 | 0.924 0.961
"" Coreutils | 0.912 | 0.975 0.911 0.901 0.924
] E .1 o ibgmp | 0.982 | 0.860 0.901 | 0.916 0.927
ThenBveadng - oo @ @ | |esmes) - - : libcurl 0.811 | 0.765 0.721 0.856 |0.877
Generatlon ___ el A T g}f_fp:_ff_{n_;%_?flf}_if}_gi _________ FunCtlon Embeddlng Generatlon Average | 0.924 0.893 0.845 0.899 0.922
iStep%-,. oA gx 01 1 [1.058, 0.883, 0.775, ..] (0.928, 0.958, 0. 803, ...) Lo Cross-architecture cture
i <X :%% 0 0 0 [-0.374, -1.058,-0.883,~] |__, (-0.859, -0.691,-0.775,-)
- Gonorntion basod o | g~ Lo]0]0] [0z Daten || [adrs o7 oste) | | The code tensor can be represented as F ¢
mﬁ(ﬁrkmmegemwonasmoceaureamasmocememgs | RMX’NQX’R?), Where Ty, T2, and ns3 denOte the length Of “a
) s A G s a function feature, the number of programs, and the . .
+C s asms ""’" m :’m((((t o & number of functions in a program. After building the I - oo
| Temor s Panetion Bbeding Genration 15071 > i s code tensor, we use tSVD to compress the code ten- T — Y -
sor to generate the function embeddings [1]. CLANG vs. GCC
: Recall
InPUt- Tensor representatlon Foe RmAmens, Baselines | Codee | Asm2Vec | DeepBinDiff | Gemini | Safe
. . Outoput: Function embeddina tensor R.. OpenSSL| 0.973 | 0.895 0.775 0.714 |0.846
Token Embeddlng Generation]f__'f)ﬂ(]__ .3 J Coreutils | 0.803 | 0.778 0.842 | 0.755 | 0.847
— BNERE libgmp | 0.982 | 0.740 0.939 0.704 |0.951
for:=1,2,...,ns: libcurl | 0.847 | 0.671 0.762 | 0.722 [0.818
Given all programs in a repository, we first build an UO, MO, VO] =SVD(F(,:,7)), Average | 0.901 | 0.771 | 0830 | 0.749 [0.8655
NLP-based learning model to obtain all token em- UG,) =001 ny), V0, L) = VO T ny),
beddings. Specifically, we have the following steps: M, 10) = MO(1:ng, 1 ny),
1.Generate the token sequences by using the U =ifft(U, | |, 3), M =iftt(M, [],3), V =ifft(V, [|, 3), :
F—Us MxVl Conclusions
R =

EMBEDING OF

A r?.‘. } Colored Position: Function Embeding Value
Program 1

In this paper, we present a tensor embedding-
based scheme, called Codee. Codee consists of an
NLP-based token embedding generation method, a
network representation-based basic block embed-
ding generation method and an effective tensor-

\

~

Gray Position: Padding Value, Zero

2nd Random Walk Normalization

Input &~ i Z . . .

@ 3 | | 3 based function embedding generation method. Our
! "'; +++++++++++++) ! evaluation shows that Codee outperforms other
G - | T g 81 o s ey current state-of-the-art approaches on the charac-

@ = R e wersrermes teristics of similarity detection accuracy, embedding

I Y jon b : mov regdimm g " " " _

5| ' @ = i . generatllon time, ana o_verall search time. Our re
) T - | 3 ~ < 7 search is one of the first to demonstrate that the
C O E i é s S Bl tensor based data analysis techniques can have
[jep P . '
= = unique strengths in the binary code similarity anal-
ySIS.
References

[1] Jia Yang, Cai Fu, Xiao-Yang Liu, Heng Yin, and Pan Zhou. Codee: A tensor embedding scheme for binary code search. I[EEE Transactions on Software Engineering, pages
1-1, 2021. doi: 10.1109/TSE.2021.3056139.

