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Introduction

Binary code search has recently emerged as a pop-
ular topic for solving software security problems,

Basic Black Embedding

We combine control-flow graph structural information
and semantic information of the tokens to generate

Application 1: Code Search
across CPU architectures

node2vecWalk random walks method.

2. Normalize the serialized codes by defining some
specific notations.

3. Train the skip-gram model with negative sampling
to obtain the token embedding.

such as finding clone code injection, detecting soft- high-quality basic block embeddings by loss function: Recall ARM vs. x86-64 ARMvs. MIPS  [MIPS vs. x86-64
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Given a binary function, the code search task is to - C2H'Si + A ) jeny aiH + p(H; — Zj) across Optimization Levels
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In this paper, we present a tensor embedding-
based scheme, called Codee. Codee consists of an
NLP-based token embedding generation method, a
network representation-based basic block embed-
ding generation method and an effective tensor-
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= = unique strengths in the binary code similarity anal-
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