
DHN: DEEP HAMILTONIAN NETWORK FOR VARIATIONAL REINFORCEMENT LEARNING

Zeliang Zhang1, Yipeng Wang2, Zeqi Liu2, Xiao-Yang Liu2

1Huazhong University of Science and Technology, Wuhan, China.
2Columbia University, New York, US.

DHN: DEEP HAMILTONIAN NETWORK FOR VARIATIONAL REINFORCEMENT LEARNING

Zeliang Zhang1, Yipeng Wang2, Zeqi Liu2, Xiao-Yang Liu2

1Huazhong University of Science and Technology, Wuhan, China.
2Columbia University, New York, US.

Introduction

Deep variational reinforcement learning by optimiz-
ing Hamiltonian equation is a novel training method
in reinforcement learning. Liu [1] proposed to max-
imize the Hamiltonian equation to obtain the policy
network. In this poster, we apply the massively par-
allel simulation to sample trajectories (collecting in-
formation of the reward tensor) and train the deep
policy network by maximizing a partial Hamiltonian
equation. On the FrozenLake 8 × 8 and GridWorld
10×10 examples, we verify the theory in [1] by show-
ing that deep Hamiltonian network (DHN) for varia-
tional reinforcement learning is more stable and ef-
ficient than DQN [2]. Our codes are available at [3].

Deep Hamiltonian Network

We denote the state, action and reward of the k-th
step/transition in a trajectory as sk, ak and rk, respec-
tively. We denote the set of states and actions as S
and A. π(s, a) denotes the probability of taking ac-
tion a at state s. We denote the partial inner product
< x,y >Ω =

∑
i∈Ω

xiyi, where Ω is an index set.

Reward Tensor: For all the possible k-step trajecto-
ries, we use a reward tensor C(k) ∈ R|S×A|

k

to record
the total rewards associated with k-step transitions.
Hamiltonian Equation:

H =

K→∞∑
k=1

〈C(k), π ⊗ π ⊗ · · · ⊗ π︸ ︷︷ ︸
k times

〉, (1)

which is the inner product of a reward tensor C(k) and
the k-times outer product of π.
Basic Idea: It is difficult to obtain the full accurate
reward C(k), k = 1, 2, 3..., K → ∞, for problems with
medium size state and action spaces, because the
size of C(k) grows exponentially with k. Instead of
obtain C(k), we utilize massively parallel simulations
to sample C(k), k = 1, 2, ..., K, and directly train a
deep policy network to learn the policy π with the
target function as the partial of (1), i.e.,

HΩ =

K∑
k=1

〈C(k), π ⊗ π ⊗ · · · ⊗ π︸ ︷︷ ︸
k times

〉Ωk, (2)

where Ωk is the index set in C(k), k = 1, 2, ..., K.
Training Process: As shown in Fig. 1, our train-
ing process for the deep Hamiltonian network (DHN)
consists of the following three steps,
• 1) Perform massively parallel simulations and ob-
tain random trajectories.

• 2) Fetch random transition batches and feed them
to the deep policy network to obtain the corre-
sponding probabilities.

• 3) Maximize (2) and utilize back propagation
method to update the parameters of the deep pol-
icy network.

Fig. 1. The training process of DHN.

Frozen Lake

Fig. 2. The Frozen Lake 8× 8 game.

Environment: Frozen Lake 8× 8, a game in OpenAI
Gym.
Rules: As shown in Fig. 2, the Frozen Lake has 8× 8
states with 4 optional actions to move around. The
agent needs to go from the start point and find the
way to the destination in limited steps. There are 8
holes which can cause the agent to fail the game.
Experiment Settings: We take Deep Q-learning
(DQN) [2] as our baseline of which the implemen-
tation is provided by ElegantRL library [4]. We use
a 4-layer fully connected neural network as the deep
policy network both in DQN and DHN. We use Adam
optimizer with the learning rate as 1×10−3 and set the
batch size as 100.
Evaluation: We evaluate the performance of policy
by computing the success rate, in which we use 50
agents to walk 100 steps and compute the rates of
agents who successfully arrive the destination.
Result: Fig. 3 shows the success rate of agents with
increasing the number of transitions learned by the
network. compared with DQN, DHN has a more sta-
ble training process. It is easy for DQN to quickly
obtain a good policy to win the game. But with in-
creasing the number of transitions fed to the net-
work, the performance of DQN shows a large and
frequent shock while the performance of DHN shows
the strong stability.

Fig. 3. Comparison of the results on Frozen Lake.

Summary of Environments

Table 1. States and actions in our experiments.
Tasks State Vector Action Vector

Frozen Lake 8× 8 4

Grid World 10× 10 4

Grid World

Fig. 4. The Grid World 10× 10 game.

Environment: Grid World 10×10, a game available
in our code.
Rules: As shown in the Fig. 4, the Grid World
has 10 × 10 states with 4 optional actions to move
around. The agent will initialize at a random loca-
tions and it needs to find the smiley as many as
possible which has 10 reward in turn. It should be
noted that there are some endpoints which may
cause the agent game over and some transfer-
points which transfer the agent to certain location.
Experiment Settings and Evaluation: Both the
experiment settings and evaluation method are the
same with that on Frozen Lake 8× 8 game.
Result: Fig. 5 shows the mean reward obtained
by the agents with increasing the training time.
Compared with DQN, DHN has a faster training
process. It only needs massive random parallel
samples of trajectories and do not need any policy
for guided sampling while DQN needs guided
exploration in the training process which costs a
large time consumption.

Fig. 5. Comparison of the results on Grid World.

Conclusions

In this poster, we propose to utilize massively par-
allel simulation to sample the reward tensor, and
utilize deep policy network to learn the policy, thus
estimate the Hamiltonian equation. We perform ex-
periments, respectively on Frozen Lake 8 × 8 and
Grid World 10 × 10, to further verify the theory of
deep variational reinforcement learning by optimiz-
ing Hamiltonian equation. The results show that
compared with conventional DQN method, the DHN
is more stable and efficient.

References
[1] X.-Y. Liu and Y. Fang. Quantum tensor networks for variational reinforcement learning. NeurIPS 2020 Workshop on Quantum Tensor Networks in Machine Learning.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing atari with deep reinforcement learning. NIPS Deep Learning Workshop, 2013.

[3] https://github.com/AI4Finance-Foundation/Quantum-Tensor-Networks-for-Variational-Reinforcement-Learning-NeurIPS-2020.

[4] X.-Y. Liu, Z. Li, Z. Wang, and J. Zheng. ElegantRL: A scalable and elastic deep reinforcement learning library. https://github.com/AI4Finance-Foundation/ElegantRL, 2021.

Contact information:

Zeliang Zhang

v-zezhang@microsoft.com

