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Introduction

The core challenge of seismic data interpolation is
how to capture latent spatial-temporal relationships
between unknown and known traces in 3-D space.
This article presents a basic deep tensor autoen-
coder (DTAE) and two variants to implicitly learn a
data driven, nonlinear, and high-dimensional map-
ping to explore the complicated relationship among
traces without the need for any underlying assump-
tion. The performance benefits of the proposed
DTAE-based method are demonstrated in experi-
ments with both synthetic and real field seismic data.

Problem Statement

Problem statement: If we assume that the missing
traces are randomly distributed, the observation or
sampling process can be represented as

TΩ = PΩ(T ). (1)
Here, PΩ(·) denotes the sampling operator, which
projects T onto the set Ω according to the following:

PΩ(T ) =

{
T (i, j, :), if (i, j) ∈ Ω,

0, otherwise,
(2)

where the (i, j)-th vector of PΩ(T ) is equal to T (i, j, :)
if (i, j) ∈ Ω and zero otherwise.
Problem Formulation: By introducing DL regres-
sion f (T ,Θ), the learning objective of the interpola-
tion task becomes

L1 (T , TΩ; Θ) = argmin
Θ

ETΩ ‖f (T ,Θ)− TΩ‖2
F (3)

From this formulation, it is clear that the task here
is to learn a function f (·) with respect to Θ that best
approximates η−1(·). Our final solution, T̂ , can be
obtained as follows:

T̂ = η (TΩ)� (1− Ω) + TΩ (4)
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Network architecture:Given a pair of training sam-
ples (Xn,Yn), we can construct a new DTAE model
with the structure. Similar to the matrix AE pre-
sented, DTAE is also a t-NN with encoding and de-
coding layers.

Xn,` = h (Xn,`−1) = σ
(
W`−1 ∗ Xn,`−1 +

−→
B `

)
(5)

g (Xn,`−1) = σ
(
W†`−1 ∗ h (Xn,`−1) +

−→
B `−1

)
(6)

Objective function: In our supervised learning pro-
cess, training the DTAE model involves finding the
parameters Θ = {W`,B`}K`=1 such that the expected
interpolation error between the output tensor values
{Xn,`}Nn=1 and the desired tensor values {Yn}Nn=1 is
minimized:

L2 (Xn,Yn; Θ) = arg min
Θ

1

N

N∑
n=1

1

2
‖Xn,` − Yn‖2

F (7)

TBP Algorithm

TBP algorithm:To optimize model (8), we develop a
TBP algorithm to minimize L3 (Xn,Yn; Θ) as a function
of Θ. That is, we adjust the network parameters Θ
through layer evolution rules. First, we need to deter-
mine how gradient descent modifiesW`−1 and B` :

W`−1 ←W`−1 − α
∂L3(W ,B)

∂W`−1

B`← B` − α
∂L3(W ,B)

∂B`

(8)

Implementation details:Taking advantage of this re-
lationship, we derive a solid theoretical framework in
which the whole DTAE solution is split into an individ-
ual deep matrix autoencoder (DMAE) solution for each
frontal slice in the discrete cosine transform (DCT) do-
main.

Algorithm 1 TBP Algorithm
Require: Xn, Yn, α, Nbs, Nr, Nt, PΩ, PAE, Type.
Ensure: X̂n.

// Training of the DTAE model
X̃n← dct(Xn, [ ] , 3), Ỹn← dct(Yn, [ ] , 3).
for k = 1, · · · , N3 do

fθ(·)← DMAE(X̃ (k)
n , Ỹ(k)

n , α, Nbs, PAE, type).
end for
// Testing of the DTAE model
for k = 1, · · · , N3 do
P̃(k)
n ← fθ(X̃

(k)
n ), n ∈ [Nt].

end for
X̂n← idct(P̃n, [ ] , 3), n ∈ [Nt].
X̂n = η(X̂n)� (1− PΩ) + X̂n.

Validation on Synthetic Data

Experiment result: For synthetic VSP data, the supe-
rior performance of the DTAE model is clearly appar-
ent.
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Validation on Parihaka-3D Data

Experiment result:To further verify the flexibility
of the DTAE method, we apply our method to the
Parihaka-3D seismic survey recorded from complex
geological structures, with the goal of demonstrat-
ing the substantial performance gains of DTAE in
the case that the low-rank assumption is not satis-
fied.
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Note that the DTAE network has a nice perfor-
mance on reconstruction of big gap.
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SNR comparison with respect to different percent-
ages of training data in the Parihaka-3D experi-
ment:

Conclusions

In this article, we proposed a basic DTAE model
and two variants for learning a data-driven, nonlin-
ear, high-dimensional mapping to discover the com-
plicated relationship among seismic traces. Exper-
imental results obtained on a synthetic dataset and
two real field datasets demonstrated that the pro-
posed DTAE model can achieve smaller interpola-
tion errors than three SOTA interpolation methods.
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