DTAE: DEEP TENSOR AUTOENCODER FOR 3-D SEISMIC DATA INTERPOLATION
Feng Qian’', Zhangbo Liu', Yan Wang', Songjie Liao?, Shengli Pan3, Guangmin Hu'

1University of Electronic Science and Technology of China, Chengdu, China.
°Xi’an Zhongxing New Software Co., Ltd., Xian, China.
3China University of Geosciences, Wuhan, China.

Introduction

The core challenge of seismic data interpolation is
how to capture latent spatial-temporal relationships
between unknown and known traces in 3-D space.
This article presents a basic deep tensor autoen-
coder (DTAE) and two variants to implicitly learn a
data driven, nonlinear, and high-dimensional map-
ping to explore the complicated relationship among
traces without the need for any underlying assump-
tion. The performance benefits of the proposed
DTAE-based method are demonstrated in experi-
ments with both synthetic and real field seismic data.

Problem Statement

Problem statement: If we assume that the missing
traces are randomly distributed, the observation or
sampling process can be represented as

To = PolT). (1)
Here, P,(-) denotes the sampling operator, which
projects 7 onto the set (2 according to the following:

(T(i,4,7), if(i,j) €,
D — 2
a(7) <\O, otherwise, (@)

where the (i, j)-th vector of P, (7) is equal to 7 (i, j, :)
if (¢,5) € {2 and zero otherwise.

Problem Formulation: By introducing DL regres-
sion f(T,0), the learning objective of the interpola-
tion task becomes

L1(T, 70 ©) = argmin Ex; | f(T,0) - Toly  (3)

From this formulation, it is clear that the task here
is to learn a function () with respect to © that best
approximates n~!(-). Our final solution, 7, can be
obtained as follows:

AN

T=n(To) ©(1—-Q)+7Tq (4)
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Network architecture:Given a pair of training sam-
ples (X,,),), we can construct a new DTAE model
with the structure. Similar to the matrix AE pre-
sented, DTAE is also a t-NN with encoding and de-
coding layers.

Xoo=h(X 1) =0 (W€—1 * Xy o1+ ﬁz) ()

g(Xyo1) =0 (Wg_l «h (X, 1) + ge—l) (6)

Objective function: In our supervised learning pro-
cess, training the DTAE model involves finding the
parameters © = {W,, B,},", such that the expected
interpolation error between the output tensor values
(X, and the desired tensor values {)),},_, is

minimized:
1 SN
X, Vo ©) = in— Y —|| X —Wl> (7
Lo(X,, Y O) argménN;QH o= Wally (7)
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TBP algorithm:To optimize model (8), we develop a
TBP algorithm to minimize L3 (&, ),;©) as a function
of ©. That is, we adjust the network parameters ©
through layer evolution rules. First, we need to deter-
mine how gradient descent modifies W,_, and 5, :

oLs(W., B
Wii1 <~ Wi — 83)(/\/ )
/—1 (8)
B, B &aﬁS(W’B)
¢ ¢ 9B,

Implementation details:Taking advantage of this re-
lationship, we derive a solid theoretical framework in
which the whole DTAE solution is split into an individ-
ual deep matrix autoencoder (DMAE) solution for each
frontal slice in the discrete cosine transform (DCT) do-
main.

Algorithm 1 TBP Algorithm
Require: X, YV, a, Ny, Ny, N, Po, Pag, Type.
Ensure: X,.

// Training of the DTAE model

Xy, det(Xy, [ ],3), Yn < det(Wn, [ ], 3)-

fork=1,---,N3ydo

fol-) + DMAE(Z", I, a, N, Pap, type).

end for

// Testing of the DTAE model

fork=1,--- , Nydo

e (&), e (V)

end for

Xn < 1dct(Pp, [ |,3), n € [Ny

Xn = n(Xn) © (1 —Pg) + X,

Validation on Synthetic Data

Experiment result: For synthetic VSP data, the supe-
rior performance of the DTAE model is clearly appar-
ent.
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Validation on Parihaka-3D Data

Experiment result:To further verify the flexibility
of the DTAE method, we apply our method to the
Parihaka-3D seismic survey recorded from complex
geological structures, with the goal of demonstrat-
ing the substantial performance gains of DTAE in
the case that the low-rank assumption is not satis-
fied.
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Note that the DTAE network has a nice perfor-
mance on reconstruction of big gap.
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SNR comparison with respect to different percent-
ages of training data in the Parihaka-3D experi-
ment:

SNR with percentage of trainning data
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Conclusions

In this article, we proposed a basic DTAE model
and two variants for learning a data-driven, nonlin-
ear, high-dimensional mapping to discover the com-
plicated relationship among seismic traces. Exper-
imental results obtained on a synthetic dataset and
two real field datasets demonstrated that the pro-
posed DTAE model can achieve smaller interpola-
tion errors than three SOTA interpolation methods.



