
High Performance Hierarchical Tucker Tensor Learning Using GPU Tensor Cores
Hao Huang1, Xiao-Yang Liu2, Weiqin Tong1, Tao Zhang1, Anwar Walid2

1Shanghai University, Shanghai, China; 2 Columbia University, NewYork, USA.

Introduction
In many real-world applicat ions, data are usual ly

represented as Hierarchical Tucker (HT) tensor model, such as
big data analysis, neural network compression and quantum
machine learning. However, it is compute intensive due to the
time complexity grows exponentially with the order of the data
tensor. In this work, we present efficient HT tensor learning
primitives using GPU tensor cores.

Hierarchical Tucker Decomposition
 The HT format is stored in the form of a binary tree T, where
each branch is a hierarchical division of the tensor mode set.

Parallel HT Decomposition on the GPU

Efficient TTN Algorithm Using GPU
Tensor Cores

• Overview of the algorithm

• Batch operation
 Use Eigenvalue decomposition instead of SVD and take the
batch solution to calculate intermediate variables in parallel.

Conclusions
 In this work, we implement the optimized tensor learning
primitives into HT decompositions, a HT tensor layer for deep
neural network and TTN algorithm. Experimental results
demonstrated that our optimized algorithms have higher efficiency.

 TTN algorithm consists of multiple tensor contractions,
and we optimize thealgorithm according to the parallelism.

• Experimental results:

• Matricization-free Memory Access

• Shard mode on multiple GPUs

• Parameters update process

• Experimental results:

• Experimental results:

• Matrix Multiplication Using GPU Tensor Cores

We schedule GPU tensor cores to optimize matrix multiplication.

HT Tensor Layer for Deep Neural Networks
Compression
• forward pass

• Algorithm optimization:

[1] H. Huang, X. Liu, W. Tong, T. Zhang and A. Walid. High Performance Hierarchical Tucker Tensor Learning Using GPU Tensor Cores. IEEE Transactions on Computers. Under review.

Use natural gradients to compute in parallel and update
the parameters.

 For forward pass, we use a HT tensor layer to represent W in
a HT format and perform optimized tensor contractions.

 We use a matricization-free memory access and avoid
consumptions of conversions between tensors and matrices.

 High-order HT tensor decomposition on multiple GPUs using
shard mode. We divide the original input tensor to shards and
transfer each shard to different GPU memory.

