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Abstract

Quantum phase transitions are ubiquitous in quantum many body systems. The
quantum fluctuations that occur at very low temperatures are known to be respon-
sible for driving the system across different phases as a function of an external
control parameter. The XY Hamiltonian with a transverse field is a basic model
that manifests two distinct quantum phase transitions, including spontaneous Z2

symmetry breaking from an ordered to a disordered state. While programmable
quantum devices have shown great success in investigating the various exotic
quantum phases of matter, in parallel, the quest for harnessing machine learning
tools in learning quantum phases of matter is ongoing. In this paper, we present a
numerical study of the power of a quantum-inspired generative model known as the
Born machine in learning quantum phases of matter. Data obtained from the system
under open and periodic boundary conditions is considered. Our results indicate
that a Born machine based on matrix product states can successfully capture the
quantum state across various phases of the XY Hamiltonian and close to a critical
point, despite the existence of long-range correlations. We further impose boundary
conditions on the Born machine and show that matching the boundary condition of
the Born machine and that of the training data improves performance when limited
data is available and a small bond dimension is employed.

1 Introduction

Quantum many body systems have attracted the attention of physicists for many years. These
systems are far from being understood by any simple analytical solution; their many body nature
demands more elaborate techniques that involve statistical approaches. Moreover, the competition
between various degrees of freedom (such as motion, charge, and spin) is the origin of many exotic
phases of matter, ranging from quantum magnets to superconducting and topological phases. Recent
developments in building coherent programmable quantum devices have provided a compelling tool
to probe the fundamental properties of the quantum matter, and the quest for building and controlling
even larger devices is an ongoing process [1, 2]. However, in parallel with the growth in system size,
the number of measurements required for the full reconstruction of quantum state scales exponentially,
and the noisy nature of the data becomes more pronounced.

Remarkably, machine learning (ML) tools have already shown great promise in extracting effective
information from large amounts of noisy data [3, 4]. One category of machine learning applications
that are inherently quantum is the task of understanding or characterizing physical systems that
exhibit many body quantum effects, such as correlated electronic structure or phase transitions from
disorder to order in spin systems. Due to the complex behavior of these systems, mean-field or
semi-classical approaches are insufficient, yet the naive approach of working in the entire quantum
state space would scale exponentially. Concretely, the exponential scaling of such systems makes any
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scalable simulation on classical devices unfeasible. Quantum simulations on quantum computers
could lead to efficient simulations for many body quantum systems or, more generally, any sparse
quantum Hamiltonian. However, it is not simple to extract meaningful knowledge of a physical
observable from a finite set of local measurements on a noisy processor, which are prone to error and
very expensive to query.

(a) (b)

Figure 1: (a) Open Born machine architecture for a chain of N atoms. Here, {i1, ...iN} denote
the spin indices (which all have size 2 for a two-level model of each atom) and {D1, ...DN−1}
denote the bond dimensions (which all have size D for our architectures). (b) Periodic Born machine
architecture for a chain of N atoms. Note that there are N bond dimensions in this architecture.

While finding efficient machine learning-based algorithms for quantum state tomography remains an
important question, another intriguing possibility is the direct characterization of quantum systems
through the measurement of many-body correlation functions. In particular, the behaviour of non-
equilibrium quantum systems undergoing a quantum phase transition (QPT) has attracted much
attention. Such transitions are driven by quantum fluctuations at zero temperature and can be
identified by the divergence of the correlation length, an encompassing universal behaviour near the
critical point [5, 6]. In this paper, we address these questions by leveraging advanced ML algorithms
that enable quantum simulation. Specifically, we explore the task of learning various phases of the one
dimensional XY Hamiltonian with open and periodic boundary conditions using the Born machine
(BM). We further introduce the Periodic Born machine (see Fig. 1) and show that the architecture of
the Born machine is sensitive to the boundary condition imposed on the training data. We start with

Figure 2: Different regions in the phase diagram of the quantum XY chain depicted for positive
values of γ and h. The model is critical for h = 1 as well as for h < 1, γ = 0, which respectively
correspond to the critical XY and XX chains. The model manifests a quantum phase transition from
disorder (h > 1) to ordered phase (h < 1). The point (γ = 1, h = 1) corresponds to the critical point
of the transverse field Ising model, and on the line γ2 + h2 = 1, the ground state can be factorized
into a product of single spin states.

the Hamiltonian of the XY model in the transverse magnetic field, described by:

H = −J
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where J is the spin-spin coupling, γ is an asymmetric constant capturing the relative strength of
interaction along x and y, and h is the external magnetic field coupled to spins along the z-axis.
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Despite the fact that this Hamiltonian can be mapped to the free fermionic model via the Jordan-
Wigner transformation, it manifests a rich phase diagram (see Fig. 2) [7]. The phase diagram involves
two distinct quantum phase transitions; namely, the critical XX line corresponding to γ = 0 with
h ≤ 1 (belonging to U1 symmetry) and the critical XY line corresponding to h = 1 (belonging to
the Z2 symmetry sector). The latter transition occurring at (|h| = J = 1) is an Ising like transition,
in that it exhibits spontaneous breaking of Z2 symmetry. This transition from a doubly degenerate
state in the ordered phase for |h| < 1 to a single ground state (|h| > 1) is similar to the classical
2D Ising phase transition, with the magnetic field replacing temperature. The XY model is exactly
solvable, allowing one to attain analytical solutions for many interesting local and non-local quantum
observables and their corresponding time evolutions [8–11]. These solutions can serve as valuable
bench-marking tools for probing the system close to a critical point [8]. In this work, rather than
calculating the exact solution, we used the density matrix renormalization group (DMRG) for the
simplicity of the numerical model. DMRG has shown great success in evaluating many physical
observables of interest for quantum spin chains [12, 13].

The rest of the paper is organized as follows. In Section 2, we first introduce the quantum inspired
generative model known as the Born Machine, based on an important category of quantum many body
states called matrix product states (MPS) [14, 15]. We further introduce the Periodic Born machine
and demonstrate its ability to learn the underlying boundary condition of quantum training data. In
Section 3, we present various data from different points of the phase diagram of the XY quantum
spin chain obtained using DMRG simulations with ITensor [16]. We then examine a successful
example of learning a ground state of the XY Hamiltonian with the Born machine. Subsequently,
we present our results for different boundary conditions with a discussion of how the loss function
and quantum fidelity of the model is affected. In Section 4, we conclude the paper with a brief
discussion of our results, an investigation into the conditions that cause the Born machine to fail,
and an explanation of how these obstacles can be overcome by generalizing the algorithm to a
complex-valued basis-enhanced Born machine.

2 Open and periodic Born machines

A generative model has two distinct objectives: 1) to learn some joint probability distribution from
training data, and 2) to subsequently generate new data from the trained model. The Born machine
is a kind of generative machine learning model with a quantum-inspired framework. Rather than
directly modeling the joint probability distribution, the Born machine models the quantum wave
function Ψ, or more generally, the probability amplitude distribution [14, 15]. To differentiate the
actual quantum state Ψ and the estimated quantum state modeled by the Born machine, we denote
our trained model with a hat: Ψ̂. One can arrive at the probability distribution of the model through
the probabilistic interpretation of quantum mechanics, also known as Born’s rule:

P̂(v) =
|Ψ̂(v)|2∑

v∈V |Ψ̂(v)|2
(2)

Here, V refers to the entire Hilbert space. Training occurs through the minimization of the negative
log likelihood (NLL), defined below:

L = − 1

|T |
∑
v∈T

ln P̂(v) (3)

In the above expression, P̂(v) is the probability distribution of our model, defined in Eq. (2), and T
represents the set of training data. Minimization of the NLL will maximize the model’s probability
of configurations v that appear in the training data. If the probability distribution P̂(v) perfectly
captures the probability distribution of the training data P(v), then the NLL will approach the
Shannon entropy of the training data T : S = −

∑
v∈T P(v) ln(P(v)).
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The matrix product state (MPS) is a natural and efficient way of classically representing the quantum
wave function of a one-dimensional chain of atoms:

Ψ̂ =

D∑
D1=1

· · ·
D∑

DN−1=1

MD1
1,i1

MD1,D2

2,i2
· · · MDN−1

N,iN
(4)

=

2N∑
v=1

Ψ̂(v)|v〉 (5)

The tensors listed in Eq. (4) can be contracted along each interior bond dimension D to produce
a single rank-N tensor, which can be cumbersomely expressed with 2N parameters Ψ̂(v) in the
computational basis – see Eq. (5). Here, v again represents a single configuration in the computational
basis (|v〉 = |λ1, λ2, · · · , λN 〉, λj ∈ {0, 1}).

It is known that the expressive power of matrix product states arises from the amount of entanglement
encoded in their bond dimensions, which depends on the particular architecture. Taking advantage of
this fact, we use an MPS as the ansatz for the model with one tensor for each atomic site. As shown
in Fig. 1a, our selected MPS architecture involves an array of rank-3 tensors connected to each other
via a virtual bond dimension of size D, while the dangling bonds indicated by i are spin indices.
The parameters trained by the Born machine are simply the elements of each tensor in the MPS. For
simplicity, we use the same bond dimension D between each tensor and select D prior to learning
(although in theory each bond dimension could be adaptively learned as well).

We employ two subtly distinct MPS architectures. The first involves an open boundary condition
and is referred to as the Open Born machine. In this MPS architecture, the first and last tensors have
only two indices: one spin index and one bond dimension linking the tensor to the rest of the chain.
The second MPS architecture involves a periodic boundary condition and is aptly named the Periodic
Born machine. In this case, each tensor has three indices: one spin index and two bond dimensions
linking the tensor to its neighbors on either side. A bond dimension is added between the first and
last tensor to complete the ring.

3 Learning a one dimensional XY quantum spin chain

A necessary ingredient to any machine learning algorithm – quantum or classical – is data. As a
proof of concept, in this work we assembled training data by sampling from DMRG simulations (see
Fig. 3). DMRG has proven to be an effective tool for accurately calculating ground state properties
of quantum spin chains, including quantum correlations [6]. A variety of points across the phase
diagram were selected for study: the Ising critical point (γ = 1, h = 1), a point from the ordered
phase (γ = 1.5, h = 0.5), a point from the disordered phase (γ = 2, h = 2), and a point from the
oscillatory region (γ = 0.5, h = 0.5). DMRG was used to calculate the ground state at these points of
interest for chain lengths of N = 13, 16, and 19 atoms. Both open and periodic boundary conditions
were considered for comparison (OBC and PBC, respectively – note that the first sum in Eq. (1)
runs from i = 1 to N for the case of PBC). The MPS output by DMRG can be efficiently sampled
in the computational basis according to the probability distribution of the quantum state, effectively
simulating data that might be acquired through measurement.

Once the training data is produced, it can be fed into either Born machine to train an MPS model of
the state. We used PyTorch’s Adam optimizer to train the model with 200 samples per batch and 20
epochs [17]. The final MPS can be sampled efficiently, generating new data that can be compared to
the original training data [14, 18]. Overlapping probability distributions of the training data and data
sampled from the trained model (Fig. 4a) provide visual confirmation that the model can produce data
that mimics state measurement. Note that in this figure, data from the x- and y-bases are included,
although only z-basis data was used for training. There is high overlap in each basis, indicating that
the full quantum state has been learned. It is not generally true that a single-basis Born machine can
learn the full quantum state. It has been shown that the MPS based Born machine utilizing gradient
based schemes for optimization fails to learn the parity data obtained from GHZ state, which is
considered to be nonlocal quantum data [18]. We will further discuss this in Section 4.

To further quantify how well the trained MPS captures the quantum state, we examined the loss
function during training as well as the quantum fidelity between our model and the quantum state
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Figure 3: General procedure for generating training data for learning and generating new results from
the trained model.

of the system F = |〈Ψ|Ψ̂〉|2, which can be calculated exactly by taking the inner product of the
trained MPS model and the MPS output of DMRG simulation. This would be a daunting task if
measurement data was our only resource, as full state tomography would be required to obtain the
quantum state. We include the quantum fidelity here in order to emphasize the power of the Born
machine. In addition to these metrics, we investigated how well the Born machine is able to capture
an observable – in particular, the correlation function G(r). G(r) is known to provide insightful
information about the underlying phase of matter. It is defined as:

G(r) =
∑
i

〈σzi σzi+r〉 − 〈σzi 〉〈σzi+r〉
Np

(6)

Here, σiz denotes the Pauli z operator acting on the ith site, and the normalization factor Np is the
number of distinct pairs of atoms in the chain separated by r. One expects that the correlation function
will decay exponentially with distance, e.g: G(r) = Ae−r/ξ, where ξ represents the correlation
length. ξ is known to provide information about the underlying quantum phase; for example, due to
the long range ordering close to a critical point, the correlation function exhibits a power law decay
and the corresponding correlation length is expected to be larger.

We first examine the power of the Born machine in learning the quantum critical point. We feed
data from the ground state of the transverse field Ising quantum spin chain with length N = 13
at the critical point (γ = 1, h = 1), simulated by DMRG. It has been shown that due to the long
range ordering at a critical point, both the Boltzmann machine and Born Machine based on projected
entangled pair state (PEPS) have failed to learn the 2-dimensional Ising model [19, 20]. To our
surprise, the MPS-based Born Machine was able to successfully capture the state at the critical point.
In Fig. 4b we present the training power of the MPS-based Born machine for a variety of quantities,
including the correlation function and correlation length. The loss approaches the Shannon entropy
of the training data, indicating that the Born machine was able to fully learn and memorize the data.
This is perhaps more evident from the fidelity, which approaches > 99% at the end of the training
period. Furthermore, the local Pauli operators (σx being the order parameter) were also successfully
learned as the generated data has good overlap with the original data. We further demonstrate the
power of the Born machine in learning the correlation function. The bottom left panels of Fig. 4b
indicate that the MPS Born machine is able to capture the long range correlations at the quantum
critical point. Additional results for different points across the phase diagram are provided in Fig. 6.

While it is more natural to consider an open boundary condition, a periodic boundary condition
allows translational invariance in the physical system, leading to an advantage in the mathematical
description and a solution for quantum spin chains. Consequently, the boundary condition imposes
different behaviour in physical quantities as well. In order to better address the learnability of the
boundary condition and uncover any advantage in using one Born machine architecture over the
other, here we present all combinations of boundary conditions between training data and Born
machine architecture. Fig. 5 provides a few examples of learning the Ising critical point for
different bond dimensions D and atom chain lengths N . Our computations indicate that in general, if
enough training data is supplied and a large enough bond dimension is selected, each Born machine
architecture is successful in learning from either OBC or PBC data. Perhaps unsurprisingly, in Fig.
5a, for a spin chain of N = 13 and with only 10000 samples, we see that the Periodic Born machine
performs considerably better than the Open Born machine when learning from PBC data. One might
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(a) (b)

Figure 4: (a) Overlaid probability distributions of training data and data generated from the trained
MPS at the critical Ising point, for a chain of N = 13 atoms with open boundary conditions. The
Open Born machine was used for training with |T | = 30000 and bond dimension D = 4. (b) Top
to bottom: The NLL loss function calculated during training compared with the Shannon entropy
of the training data, indicated by S(T ). The infidelity (1− F ) between the model and the quantum
state during training. Only data in the computational basis (that is, the Z configuration) is included
in T , indicating the high training power of the Born machine for this model. Correlation function
G(r) of the MPS after training, plotted over the correlation function of the DMRG simulations. The
correlation length ξ of the model during training plotted alongside the “target” correlation length of
the DMRG results to highlight the power of Born machine in capturing the long range ordering at the
quantum critical point.

attribute this result to the larger expressibility of the Periodic Born machine due to its increased
number of model parameters. However, this explanation seems insufficient when one considers that
the infidelity was decreased by an order of magnitude with the addition of only eight (= 2i(D2−D))
parameters. It is the strategic location of these parameters in the architecture as a whole, greatly
expanding the connectivity and entanglement-encoding potential of the MPS, that contributes to
the success of the Periodic Born machine. This is further explored in Table 1, which lists the final
fidelities for different combinations of model architecture and data boundary condition for a variety
of bond dimensions D. The exact number of model parameters, Ω, is provided for clarity. Notice
the success of the Periodic Born machine in learning from PBC data; the quantum fidelity reaches
> 99% for D = 3 (Ω = 234). In order for the Open Born machine to reach this level of quantum
fidelity, a bond dimension of at least 6 is required (Ω = 816). Thus, one can attribute the success of
the Periodic Born machine to the architecture of the model – the physical placement of the model
parameters – rather than their total number. In all situations, the fidelity reaches > 99% well before
D = 10 with little improvement beyond that threshold.

In Fig. 5b, the bond dimension was increased from 2 to 4. The Open Born machine was more
successful in learning PBC data with more parameters in the model, though it was still out-performed
by the Periodic Born machine. Finally, in Fig. 5c, we consider the scenario where there is limited
data available (relative to the size of the Hilbert space, as 30000 � 2N for N = 19) and a small
bond dimension has been selected for the model. In this situation, interestingly, the advantage of
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(a) (b) (c)

Figure 5: (a) Loss and fidelity during training of the Ising critical point for a chain of 13 atoms with
|T | = 10000 and bond dimension D = 2. (b) Same as (a), with bond dimension increased to D = 4.
(c) Same as (a), with chain increased to 19 atoms and training data increased to |T | = 30000. The
loss and fidelity data presented here has been smoothed for clarity of comparison.

Model Data D Ω F

Open Open

2 96 0.9888
3 210 0.9924
4 368 0.9936
6 816 0.9944
8 1440 0.9944

10 2240 0.9946

Open Periodic

2 96 0.8958
3 210 0.9491
4 368 0.9808
6 816 0.9909
8 1440 0.9908

10 2240 0.9910

Periodic Open

2 104 0.9922
3 234 0.9928
4 416 0.9935
6 936 0.9949
8 1664 0.9944

10 2600 0.9935

Periodic Periodic

2 104 0.9882
3 234 0.9948
4 416 0.9961
6 936 0.9964
8 1664 0.9966

10 2600 0.9964

Table 1: Fidelity after training the Ising critical point for a chain of 13 atoms with |T | = 10000.
Various combinations of model architecture, data boundary condition, and bond dimension are
provided. Bond dimension and model architecture fix the total number of model parameters, Ω.
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(a) (b)

Figure 6: (a) Top two panels: overlaid probability distributions of training data and data generated
from the trained MPS at the point γ = 1.5, h = 0.5 from the ordered phase, for a chain of
N = 13 atoms with open boundary conditions. The Open Born machine was used for training with
|T | = 30000 and bond dimension D = 4. The infidelity (1−F ) between the model and the quantum
state during training. Correlation function G(r) of the MPS after training, plotted over the correlation
function of the DMRG simulations. (b) Top two panels: overlaid probability distributions of training
data and data generated from the trained MPS at the point γ = 2, h = 2 from the disordered phase,
for a chain of N = 13 atoms with open boundary conditions. The Open Born machine was used for
training with |T | = 30000 and bond dimension D = 4. The infidelity (1− F ) between the model
and the quantum state during training. Correlation function G(r) of the MPS after training, plotted
over the correlation function of the DMRG simulations.

matching the boundary conditions of the model to those of the data is apparent: for both OBC and
PBC data, the opposite model is unable to minimize the loss function and learn the state, while the
“matching” model can learn the state with fidelities > 90% – despite the few number of parameters
and small size of the training data.

4 Discussion and future directions

The transverse field XY Hamiltonian is a simple model manifesting two distinct quantum phase
transitions. The exact mathematical solution of this model has provided a powerful tool to investigate
a wide variety of observables, making the XY model very valuable in understanding many aspects of
quantum phase transitions and in benchmarking. In this paper, we investigated the power of the MPS-
based Born machine in learning across the quantum phase transition from disorder to order (see Fig.
6), as well as at critical point, (see Fig. 4). Surprisingly, our simple Born machine was able to learn
the quantum states across different phases and even at critical point despite the long range ordering.
We also investigated the learnabilty of the periodic and open Born machines when different boundary
conditions are imposed on the training data. Our numerical results indicate that when given enough
sampling data and a large enough bond dimension, the Periodic Born machine has a considerably
better performance in learning from training data with a periodic boundary condition, and comparable
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(a) (b)

Figure 7: (a) Overlaid probability distributions of training data and data sampled from the trained TN
at the point h = 0.5, γ = 0.5 for a chain of 13 atoms with open boundary conditions. The Open Born
machine was used for training with |T | = 30000 and bond dimension D = 4. (b) Top to bottom:
Loss of the model during training with the Shannon entropy of the training data S(T ). Fidelity
between the model and the quantum state during training. Correlation function G(r) of the model
after training, plotted over the correlation function of the DMRG results. The correlation length ξ of
the model during training, plotted alongside the “target” correlation length of the DMRG results.

performance in learning from training data with an open boundary condition. This can partially be
attributed to the extra parameters provided by the extra bond dimension, but is largely due to the
enhanced connectivity that the strategically placed extra bond dimension provides. However, for
limited amounts of training data and a small bond dimension, the Born machine becomes sensitive to
the original boundary imposed on the quantum data, and the matching Born machine performs better
than the opposite architecture, as shown in Fig. 5c.

Finally, although many points on the phase diagram can be learned to a high degree of accuracy by
the Born machine (as evidenced by Fig. 4), this is not true of every point. In particular, the Born
machine is less successful in learning points from the oscillatory region of the phase diagram, where
the correlation function shows oscillatory behavior. This region is highlighted in blue in Fig. 2. See
Fig. 7 for an example of learning the point h = 0.5, γ = 0.5. The z-basis probability distribution
associated with this point is spread across most of the Hilbert space, resulting in a large value for the
Shannon entropy. This is an obstacle to learning – the loss does not reach the global minimum, and
although some aspects of the state can be captured by the model (such as the correlation function
and correlation length), the full quantum state has not been learned faithfully. It is possible to learn
such states by incorporating training data from a different basis with a lower Shannon entropy (the
x-basis, for this particular phase of the system) and introducing complex parameters to increase the
expressibility of the model, but this discussion will be left for a future study.
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