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Abstract

Structure learning of tensor network (TN) is to select the optimal network for TN
contraction to fit a tensor. In past literature and the view of many tensor researchers,
the task is widely considered as the same as learning TN (model) ranks. In this
manuscript, we briefly analyze the relation of these two critical tasks, stating that
rank minimization is actually a subtopic of the structure learning for TN, with
ignoration of the graph essence of TN structures. On one hand, we agree that the
vanilla structure learning task amounts to rank minimization of TN associated to
a complete graph. On the other hand, we propose an open problem referred as to
permutation learning, a variant of the structure learning constrained by a graph,
to point out that rank minimization would fail in this case, due to its limitation of
exploring graph spaces. We last focus on the permutation learning and offer several
preliminary results to help understand this unexplored task.

1 Introduction

Tensor network (TN) is recently paid much attention by researchers in various scientific fields,
including computer science, signal processing, physics and applied mathematics. In these fields
many problems involve constructing low-dimensional representations for extremely-high-dimensional
functions or data. The framework of TN exhibits the potential from an algebraic perspective to satisfy
this requirement. And more importantly there have been rich results as to both algorithms and theory
to demonstrate the efficiency of TN in real-world applications. Thanks to the flexibility of modeling
language like the diagram notation [9], TN is also expected to achieve the express capability as
similar as the well-known deep neural networks [11].

The flexibility of TN, on the other hand, leads to a severe challenge on structure learning, i.e., the
model selection for TN, in practice. It has mentioned in our previous work [8] that there would be
more 68 billion possible structures only for fitting an order-9 tensor, even though the (model) ranks
(also known as bond dimension) are fixed. As a consequence, it yields an intractable task that learns
the optimal structure from the vast number of candidates.

Rank minimization of TN is reckoned the essence to tackle the structure learning task by some
existing works to our knowledge. Indeed, the structure learning can be addressed by minimizing the
(model) ranks from a “fully-connected” TN [16] associated to a complete graph. Since the edges —
of a simple graph used to formulate TN — can be harmlessly discarded if the associated ranks equal
one [8, 13], the TN structure is thus learned by such operations.

Are rank minimization and structure learning therefore two sides of the same coin? Maybe not in
some cases. In this manuscript, state that we cannot handle all possible structure learning problem
of TN by only rank minimization, particularly under graph constraint. We support the statement
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by proposing an open problem called permutation learning of TN. In the new problem we learn the
optimal mapping from tensor modes [6] to vertices (also known as core tensors in literature [1, 2, 3]).
We point out that rank minimization fails to solve this problem in general since it ignores the inherent
graph nature of TN structures, which contain the important information in respect of relations among
vertices.

In the rest of the manuscript, we first review the notions of tensor network and its rank minimization
task. After that, we attempt to analyze the relation between rank minimization and the structure
learning of TN by answering the questions: when and why the structure learning can be tackled
by rank minimization? and why such the fashion gets less effective on permutation learning? Last
but not least, we focus on the permutation learning and offer several results to shed brief light on a
promising direction to address the issue.

2 Tensor network and its rank minimization

We consider an order-N tensor as a multi-dimensional array of real numbers represented by
Xiy g iy ERI@RE2 @ @RIV, where @ denotes the tensor product, the indices 4,,, m € [N]
corresponds to mth (tensor) mode associated to the vector space R’ and [N] denotes a set of
integers from 1 to N. Sometimes we also use X by ignoring those indices to denote the same
tensor for brevity. Tensor contraction, a binary operation on tensors, is defined as a matrix-like
multiplication of two tensors under given indices. The operation details refer to the work [9].

Intuitively, a tensor network (TN) is a set of tensors, each of which can be represented as a sequence
of tensor contraction of atomic tensors, dubbed vertices in the manuscript, associated to vector
spaces R’t R’z ... R~ and alabelled simple graph (G, f,.) = (V, E, f,.), where V, E, f,. denote
the set of vertices, edges and the labelling function on E, respectively. Note that the function
fr + E — Z labels each edge of the graph G, called (network) topology, with a positive integer,
of which a collection over all edges is referred to as the (model) ranks of TN. Formally, we apply
the well-defined expression TN S(G, f,, Rt ... RIV) in the work [13] to representing such a
tensor network. If the vector spaces R’», n € [N] are unimportant in the task, we also simplify the
expression by TN S(G, f,) without confusion.

Note that the definition of the (model) ranks of a TN differs from those introduced by Ye and Lim [13],
including G-ranks, border ranks and generic GG-ranks, although they are strongly close to each other.
In contrast to them, the model ranks reflect the degree of freedom of TN as a function, rather than
an algebraic property of a specific tensor itself. Letting a tensor ¥ € R* @ R2 @ ... @ RI~, the
rank minimization for TN associated to graph G is defined as solving a multi-objective optimization
problem as follows:

min f,(E). st.X € TNS(G.J,). (1
where IF,. denotes the set of all feasible labelling functions in our scenario. Note that the optimiza-
tion (1) is actually to learn the G-ranks of TN defined in the work [13], and from the machine learning
perspective the aim of (1) is to select the smallest degree of freedom for TN, in turn yielding much
bias yet less variance for prediction.

3 Rank minimization loses the graph information of TN structures

Structure learning of tensor network (TN), falling under the general heading model selection, is to
learn the most suitable TN models, composed of a graph G and the rank-related labelling function f,,
which performs well in practice. As aforementioned that a model with smaller degree of freedom
is more preferable (i.e., suitable) in general because of the “bias—variance” balance. The structure
learning is therefore connected from the rank minimization of TN in a natural manner.

For convenience, we focus on a vanilla tensor fitting problem in the manuscript. Supposing a tensor
X e R @ R2 @ .- @ RV, the associated structure learning is to solve the following optimization
problem [8]:
i G, fr), st.XeTNS(G,f), 2
gelin (G, fr), s (G, fr) 2)
where G denotes the set consisting of all possible simple graphs with N vertices and ¢( - ) is any
fitness function over TN structures, but generally the compression ratio, number of parameters or



even directly the ranks. We can observe from (1) and (2) that they are “visually” close to each other
especially when the fitness function is supposed to be the model ranks. Meanwhile, Their difference
is also readily apparent in terms of formulas. Searching the graph G from space G is taken into
account in structure learning, while only the ranks are considered in the rank minimization task.

What does the discrepancy mean when comparing the two tasks? We will see, if there is no structural
constraint on G, the discrepancy offers no additional information since

Proposition 1. Let the fitness function in (2) be the same as in (1), i.e., ¢(G, f,.) = f-(E), then the
optimization problem (2) is equivalent to (1) if the graph G in (1) is complete.

It is proved by the fact that the edges labelling as “1” can be harmlessly discarded from G [13].
The equivalence between the two tasks motivates most recent works like [4, 5] to learning TN
structures by ranks. Indeed as such, various algorithms for matrix rank minimization— such as
forward/backward-stepwise searching, shrinkage methods and Bayesian inference— can be naturally
extended into their tensor forms.

3.1 Learning TN structure under a graph constraint

However such the equivalence would be invalid if the graph space G in (2)
is constrained — leading to a graph-constrained structure learning task of A
TN. We explain it by a specific yet practically important example: suppose

an order-4 tensor without loss of generality, and we apply the tensor

ring (TR, [14]) to the approximation by the four vertices, as illustrated A

in Figure 1. Obverse that, not only TR-ranks, we also need to select a b _+_B
suitable mapping from the tensor modes, i.e.,, A, B, C, and D, to vertices

of the TR to finally determine the structure. In this case, we will have
three different mappings, including “A->B->C->D”, “A->C->B->D”, “A-
>B->D->C” three different sequences. We call the problem to select L
the optimal from those mapping the “permutation learning” of TN. The 7R decompostion C
word “permutation” reveals that those mappings essentially amount to
permutations of vertices.

C
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Figure 1: Which tensor
The vanilla rank minimization of TN would fail in the above example. ring (TR) is the optimal?
Due to the Fixed the graph G in (1) it bonds the relation between tensor

modes and vertices in TN. In turn, rank minimization is only able to

search the optimal label for each edge or to check whether the edges can be discarded or not. No
permutation can be learned in this form. One may argue that the permutation learning can be tackled
by trivially solving (2) or equivalently by minimizing the ranks from a TN with a complete graph K,
as aforementioned. It is reasonable if the tensor owns an inherent low-rank TR structure. But this
assumption is generally not true for most of real-world data. In practice there is no guarantee that the
solutions of (1) or (2) obey the desired TR format, in turn failing in permutation learning of TN.

Remark. One may also argue, from a algorithmic view, that the existing methods for learning TN
structures without constraints would be tackle the task of permutation learning within slight modifi-
cation. “The greedy method like [4] can preserve the topology of the solution in a straightforward
manner by limiting the search space of the “find-best-edge” subroutine”, one reviewer said in the
comment. We agree if the “template” graph is as simple as a cycle graph mentioned in the example.
But the first author of the manuscript reckon that there are still two issues that are deserved to discuss:
first, how to efficiently restrict the greedy trajectory into a given complex template graphs, which
would be non-symmetric and disconnected almost everywhere? second, how to ensure the algorithm
avoiding those solutions, which would be even not stationary points? It is also worthwhile to note that
limiting the greedy trajectory has been a way to take the graph information into account, which gets
different from the trivial rank minimization defined in (1). All we agree that the greedy algorithms
would be a promising way for permutation learning, although this two questions seem unanswered to
date.

Although it remains open on theory, the above example partially reflects the limitation of solving TN
structure learning only by rank minimization. The insight hiding behind this example is that only
concerning the ranks would lose the important graph information of TN structures. In other words,
the irregularity imposed by the graph constraint cannot be trivially modelled by the problem (1)



with a complete, unless further constructing a sophisticated constraint on [F,. associated to the graph
constraint.

4 Preliminary results on the permutation learning for TN

we last give several elementary results for analyzing the proposed permutation learning problem,
where we focus on a question that how the network topology, as the cycle graph Cj in the preceding
example, impacts the search space of the optimization (2).

We first shed light on the relationship between permutation learning and a general structure learning
for TN. We see that learning the permutation is a variant of the structure learning under a graph
constraint. As known from the example, the tensor ring (TR) assumption limits the original search
space G of (2) into its subset encompassing all automorphisms from the cycle graph Cy. Thus we
have an explicit form for the permutation (and rank) learning associated to any network topology G
as

gedlin o(G, fr), st.X €TN(G,f.), Go={G € G|G =Gy} 3)
where 2 denotes the graph isomorphism. We see that if Gy = Ky then the permutation learning is
identical to the structure learning (2), and as well to the rank minimization with G = K in (1). In
nontrivial cases such as Gy # K, however, G constrains the search space into a proper subset. It is
therefore interesting to know how G impacts the scale of the search space? In doing so, we suppose
a graph Go = (V, Ey) with N vertices and the labelling functions F,., related to the ranks, which is
bounded by R > 0. Denote the search space of (3) by Lg, g, i.e., Lg,,r := Go x Fg, where x is
the direct product. The scale, also known as cardinality, of L, g is thus given as

log [Lg,.r| = |Eo|log R + log N1 —log |Aut(Gy)|, )

where | - | denotes the cardinality of a set, log( - ) denotes the natural logarithm and Aut(Gg) denotes
the graph automorphisms of G. Specifically with typologies for those practical TNs, we have

1. Tensor train [10]: log |Lp, r| = (N — 1)log R + log(N!) —log 2
2. Tensor ring [15]: log [L¢oy r| = Nlog(R) + log (N —1)! —log 2
3. Tensor tree [13]: (N —1)log R+ log N <log|Lr, r| <log|Lp, gl
4. PEPS [12]: log|Ly,, .| < (2mn —m — n)log R + log(mn)! — log 4,

where in PEPS, Projected Entangled Pair States [12], m, n denotes the number of vertices of rows
and columns for a two-dimensional lattice and N = mn in this case. We have two observations
from these results. First, Fixed the number of vertices IV, the scale of the search space is determined
by not only | Ep|, the number of edges, but also the automorphism term |Aut(Gp)|, which reflects
the symmetry of G. Second, in those practical TNs the scale is mainly dominated by two terms,
N log(R) and log(N'), which correspond to the first two terms on the right-hand side of Eq. (4),
respectively. Surprisingly, the impact by the third term of Eq. (4) w.r.t. the automorphism of G|
seems relatively weak in these cases! Does this fact universally exist in all TNs? We use the following
proposition to rigorously answer the question that the affect by the automorphism of Gy is generally
ignorable for TNs, of which the topology G is degree-bounded.

Proposition 2. Assume that Gy = (V, Ey) with N vertices is connected graph and its maximum
degree A¢, is a constant that is far less than N, then we have

log |Le, r| = Q(Nlog R+ Nlog N), (5)

where Q( ) denotes the big-Q) notation, which means that there exist No, Ry > 0 and a constant
M > 0, such that for any N > Ny and R > Ry we have the inequality log(|Lg, r|) > M -
(NlogR+ NlogN)

The proof is given as the appendix. As a sketch, the result is proved by bounding the both | Ey| and
|Aut(Go)| in Eq. (4) by the maximum degree A, using the Handshaking lemma known in graph
theory and Theorem 2 given in [7], respectively.The assumption of the bounded graph degree can be
satisfied in most of practical TNs since those vertices are expected to be bounded by a constant in
general.



The ignorablity of the automorphism of GGy reveals an important fact: a symmetric group Sy of order
N would be a “good” alternative to G, such that the overall search space L, r can be embedded
into a algebraic group, of which we have a clearly defined operation and rich theoretical tools. As a
potential consequence, they would help develop optimization algorithms to computationally address
the permutation learning task of TN.

5 Conclusion

We use the permutation learning, a specific yet practically important variant of the structure learning
of tensor network (TN), to illustrate why and when learning TN structure differs from the rank
minimization task. In the manuscript, we have seen that the the structure learning is equivalent to
rank minimization with a complete graph, up to the objective, if there is no structural assumption on
the graph space G. Otherwise, the rank minimization model would fail due to the irregular essence of
the search space by the graph constraint. We also briefly discuss the properties of the permutation
learning, suggesting that in many practical TNs a symmetric group has been sufficiently good as
an alternative to the graph part of the search space for the computational purpose. We expect these
results can help solve the permutation learning problem in a near future.
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Appendix

A Proof of Proposition 2

Proof. According to Eq. (4) we have the following lower bound of the cardinality of L, r, that is,
IOg |]LG07R‘ > ‘EO| IOgR + 1Og (N - 1)' - IOg AGOI - (N - AGO - 1) 1Og(AGo - 1)? (6)
The inequality is held by the relation in Theorem 2 of the work [7]:

log(Aut(Gp)) < log N +log Ag,! + (N — Ag, — 1) log(Ag, — 1), (7
if Gy is connected. Meanwhile, we use the handshaking lemma in graph theory to bound | Ey| by
1 1
|Bo| > 5 ;deg(v) > = Négy, (8)

where deg denotes the degree of a vertex and g, < Ag, is the minimum degree of G. We also
bound the factorial terms in (6) by the Stirling’ approximation as

1
log Ag,! <0.5log2m + (Ag, +1/2)log Ag, — Ag, + ,
12A¢, ©)
1
log N! > 0.51log 2 N+1/2)logN — N + ———.
og N! > 0.5log2m + (N +1/2)log +12N+1
Substitute (8) and (9) in to (6), then we have
1
log |Lg,.r| > §5G0N10gR + (N —0.5)log(N — 1) — aN + 3, (10)

where «, 3 denotes two constant with respect to Ag,. Since g, is upper bounded by the constant
Ag,, we easily have
log |Lg,.rl =Q(Nlog R+ NlogN), (11)

by the definition of the big-{2 notation. O



