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INTRODUCTION
■ Earth observation: often train with partially or un-

labelled dataset
→ Highly benefit from generative models, includ-
ing Generative Adversarial Networks (GAN)

■ On-going study on Quantum Machine Learning
(QML) applied in Earth observation domain [1]

OBJECTIVES
■ Inspired by Ref. [2], we test Quantum Convo-

lutional Neural Network (QCNN) architecture on
Earth observation images (EuroSAT dataset)

■ Test QCNN as a binary classifier for real and fake
data and as a multiclass classifier

■ Based on the initial works, we ultimately aim to re-
produce unlabelled Earth observation imagess us-
ing quantum generative adversarial networks

QUANTUM EMBEDDING
To encode classical data x as a quantum state |ψ(x)⟩,
we use Hybrid Angle Encoding (HAE) [2] with b
blocks of m qubits:

|ψ(x)⟩ =
b⊗

k=1

|ψk(x)⟩ (1)

|ψk(x)⟩ =
2m∑
i=1

m−1∏
j=0

cos1−ij (xg(j),k) sin
ij (xg(j),k) |i⟩k (2)

where g(j) = 2j +
∑j−1

ℓ=0 iℓ2
ℓ and |i⟩ = |i0 · · · im⟩ with

ij ∈ {0, 1}.

Figure 1: Quantum circuit to embed a classical data as a 4-
qubits quantum state with the equation

Pros: 1. Able to get x back from the probability
distribution (unlike dense qubit encoding). 2. Good
qubit-gate compromise (between the two extremes of
qubit and amplitude encodings)
Cons: Increase in circuit complexity (two-qubit gates
number)

QUANTUM CNN
The convolutional circuits that we tested are taken
from Ref. [2]

• Convolutional Filters - Parameterized Quantum
Circuits (PQC) with single-qubit and two-qubit
operations.
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Figure 2: Examples of convolutional filters used for the
study. Further details could be found in Ref. [2]

• Pooling - PQC applied on two-qubits to reduce
the two-qubit states to one-qubit states.

■ Reduces the risk of barren plateau
■ Version 1: Identical PQCs in a single layer → Trans-

lational invariance
■ Version 2: Different parameters in each convolu-

tional filters → increased model complexity and
flexibility

■ Study the influence of different gates on the model
expressibility.
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BINARY CLASSIFICATION

Figure 3: Influence of the choice of gates for a real-fake clas-
sification task on the EuroSAT dataset. The fake dataset is
created by sampling randomly from a uniform distribution.
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Figure 4: Confusion matrix obtained by binary classifica-
tions using PCA and U6 circuit. The classification is per-
formed by taking successively couples of classes among 4
classes.

ONGOING RESEARCH
We are planning to increase the input feature size and
investigate other feature extraction methods and con-
volution filters to improve the classification accuracy.
Ultimately, we aim to use QCNN as a generator in the
quantum GAN to generate Earth observation images
with a classical (hybrid model) or a quantum discrim-
inator (quantum model). The inverse transform of the
features will be essential in this case.

MULTICLASS
■ We perform L-class classification by measuring the

probability distribution for log2(L) qubit and using
categorical cross entropy.

3

3 Data Embedding QCNN

Figure 5: Schematic diagram of quantum circuit for four-
class classification.
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Figure 6: Confusion matrix of 4-class classification for
MNIST dataset with U6 circuit.

AnnualCrop Forest Herbaceous
Vegetation

Industrial

Predicted labels

A
n
n
u
al
C
ro
p

F
or
es
t

H
er
b
ac
eo
u
s

V
eg
et
at
io
n

In
d
u
st
ri
al

T
ru
e
la
b
el
s

0.54 0.071 0.39 0

0 0.99 0.014 0

0.22 0.23 0.54 0.017

0.0053 0.66 0.33 0.0053

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Confusion matrix of 4-class classification of Eu-
roSAT dataset with U6 circuit.

DISCUSSION
■ High Accuracy of real-fake binary classification

→ Best result with version2 + autoencoder
→ Possibility to use QCNN as a discriminator in
quantum GAN

■ Accuracy of binary classification varies depending
on the classes (50%∼97%)

■ High accuracy for multiclass classification of
MNIST dataset (except for class 2), but more simu-
lations and studys are required for EuroSAT dataset

DIMENSIONALITY REDUCTION
■ Impossibility of original image size encoding (Eu-

roSAT: 64× 64 = 4096 features) → Extract features
using classical methods:

1. PCA
2. Convolutional Autoencoder (keeps spatial

structure)

■ For this study, we reduce the images to N = 30
features → QCNN with 2 blocks of 4 qubits


