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INTRODUCTION

B Earth observation: often train with partially or un-
labelled dataset
— Highly benefit from generative models, includ-
ing Generative Adversarial Networks (GAN)

B On-going study on Quantum Machine Learning
(OML) applied in Earth observation domain [1]

OBJECTIVES

B Inspired by Ref. [2], we test Quantum Convo-
lutional Neural Network (QCNN) architecture on
Earth observation images (EuroSAT dataset)

B Test QCNN as a binary classifier for real and fake
data and as a multiclass classifier

B Based on the initial works, we ultimately aim to re-
produce unlabelled Earth observation imagess us-
ing quantum generative adversarial networks

QUANTUM EMBEDDING

To encode classical data = as a quantum state |i)(x)),
we use Hybrid Angle Encoding (HAE) [2] with b
blocks of m qubits:
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Figure 1: Quantum circuit to embed a classical data as a 4-
qubits quantum state with the equation

Pros: 1. Able to get « back from the probability
distribution (unlike dense qubit encoding). 2. Good
qubit-gate compromise (between the two extremes of
qubit and amplitude encodings)

Cons: Increase in circuit complexity (two-qubit gates
number)
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QUANTUM CNN

The convolutional circuits that we tested are taken
from Ref. [2]

e Convolutional Filters - Parameterized Quantum
Circuits (PQC) with single-qubit and two-qubit

operations.
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Figure 2: Examples of convolutional filters used for the
study. Further details could be found in Ref. [2]

* Pooling - PQC applied on two-qubits to reduce
the two-qubit states to one-qubit states.

Reduces the risk of barren plateau

Version 1: Identical PQCs in a single layer — Trans-
lational invariance

B Version 2: Ditferent parameters in each convolu-
tional filters — increased model complexity and
flexibility

B Study the influence of ditferent gates on the model

expressibility.

DIMENSIONALITY REDUCTION

B Impossibility of original image size encoding (Eu-
roSAT: 64 x 64 = 4096 features) — Extract features
using classical methods:

1. PCA

2. Convolutional
structure)

Autoencoder (keeps spatial

B For this study, we reduce the images to N = 30

features — QCNN with 2 blocks of 4 qubits
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BINARY CLASSIFICATION
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Figure 3: Influence of the choice of gates for a real-fake clas-
sification task on the EuroSAT dataset. The fake dataset is
created by sampling randomly from a uniform distribution.
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Figure 4: Confusion matrix obtained by binary classifica-
tions using PCA and Us circuit. The classification is per-
formed by taking successively couples of classes among 4
classes.

DISCUSSION

B High Accuracy of real-fake binary classification
— Best result with version2 + autoencoder
— Possibility to use QCNN as a discriminator in
quantum GAN

B Accuracy of binary classification varies depending
on the classes (50%~97%)

B High accuracy for multiclass classification of
MNIST dataset (except for class 2), but more simu-
lations and studys are required for EuroSAT dataset

Eesa

MULTICLASS

B We perform L-class classification by measuring the

probability distribution for log, (L) qubit and using
categorical cross entropy.

Data Embedding
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Figure 5: Schematic diagram of quantum circuit for four-
class classification.
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Figure 6: Confusion matrix of 4-class classification for

MNIST dataset with Ug circuit.
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Figure 7: Confusion matrix of 4-class classification of Eu-

roSAT dataset with Ug circuit.

ONGOING RESEARCH

We are planning to increase the input feature size and
investigate other feature extraction methods and con-
volution filters to improve the classification accuracy:.

Ultimately, we aim to use QCNN as a generator in the
quantum GAN to generate Earth observation images
with a classical (hybrid model) or a quantum discrim-
inator (quantum model). The inverse transform of the
features will be essential in this case.




