EPFL : CERN openlab

INTRODUCTION

Earth observation: often train with partially or unlabelled dataset

 \rightarrow Highly benefit from generative models, including Generative Adversarial Networks (GAN)

On-going study on Quantum Machine Learning (QML) applied in Earth observation domain [1]

OBJECTIVES

- Inspired by Ref. [2], we test **Quantum Convolutional Neural Network** (QCNN) architecture on Earth observation images (EuroSAT dataset)
- Test QCNN as a binary classifier for real and fake data and as a multiclass classifier
- Based on the initial works, we ultimately aim to reproduce unlabelled Earth observation images using quantum generative adversarial networks

QUANTUM EMBEDDING

To encode classical data x as a quantum state $|\psi(x)\rangle$, we use **Hybrid Angle Encoding** (HAE) [2] with b blocks of m qubits:

$$|\psi(x)\rangle = \bigotimes_{k=1}^{b} |\psi_k(x)\rangle \tag{1}$$

$$|\psi_k(x)\rangle = \sum_{i=1}^{2^m} \prod_{j=0}^{m-1} \cos^{1-i_j}(x_{g(j),k}) \sin^{i_j}(x_{g(j),k}) |i\rangle_k \quad (2)$$

where $g(j) = 2^j + \sum_{\ell=0}^{j-1} i_\ell 2^\ell$ and $|i\rangle = |i_0 \cdots i_m\rangle$ with $i_j \in \{0, 1\}.$

Figure 1: Quantum circuit to embed a classical data as a 4qubits quantum state with the equation

Pros: 1. Able to get x back from the probability distribution (unlike dense qubit encoding). 2. Good qubit-gate compromise (between the two extremes of qubit and amplitude encodings)

Cons: Increase in circuit complexity (two-qubit gates number)

QMLFOR EARTH OBSERVATION IMAGES

SU YEON CHANG^{1,2}, BERTRAND LE SAUX³, SOFIA VALLECORSA¹, MICHELE GROSSI¹ ¹ CERN, Openlab, ² EPFL, Department of Physics, ³ European Space Agency, Φ -lab

QUANTUM CNN

The convolutional circuits that we tested are taken from Ref. [2]

 Convolutional Filters - Parameterized Quantum Circuits (PQC) with single-qubit and two-qubit operations.

$-R_x(\theta_1)-R_z(\theta_3)$	$R_z(\theta_5)$	•	$R_x(heta_7)$	$R_z(\theta_9)$
$-R_x(\theta_2) - R_z(\theta_4)$	•	$R_x(heta_6)$	$R_x(heta_8)$	$R_z(\theta_{10})$ –

(a) U_6 (10 parameters)

$-U3(\theta_1,\theta_2,\theta_3)$	$- R_z(\theta_7)$	Θ $R_y(\theta_9)$	$\bullet U3(\theta_{10},\theta_{11},\theta_{12})$
$-U3(\theta_4, \theta_5, \theta_6)$	Θ $R_z(\theta_8)$	├	$\bigcup U3(\theta_{13},\theta_{14},\theta_{15})$

(b) U_{SU4} (15 parameters)

Figure 2: Examples of convolutional filters used for the study. Further details could be found in Ref. [2]

- Pooling PQC applied on two-qubits to reduce the two-qubit states to one-qubit states.
- Reduces the risk of barren plateau
- Version 1: Identical PQCs in a single layer \rightarrow Translational invariance
- Version 2: Different parameters in each convolutional filters \rightarrow increased model complexity and flexibility
- Study the influence of different gates on the model expressibility.

DIMENSIONALITY REDUCTION

- Impossibility of original image size encoding (EuroSAT: $64 \times 64 = 4096$ features) \rightarrow **Extract features** using classical methods:
 - 1. PCA
 - Autoencoder (keeps spatial 2. Convolutional structure)
- For this study, we reduce the images to N = 30features \rightarrow QCNN with 2 blocks of 4 qubits

REFERENCES

- A. Sebastianelli et al. On circuit-based hybrid quantum neural networks for remote sensing imagery classification, 2021.
- [2] T. Hur, L. Kim, and D. K. Park. Quantum convolutional neural network for classical data classification, 2021.

BINARY CLASSIFICATION

1.000.95 0.90 ŭ 0.85 ₹ 0.80 0.75 0.70^{-1}

Figure 3: Influence of the choice of gates for a real-fake classification task on the EuroSAT dataset. The fake dataset is created by sampling randomly from a uniform distribution.

label

Figure 4: Confusion matrix obtained by binary classifications using PCA and U_6 circuit. The classification is performed by taking successively couples of classes among 4 classes.

DISCUSSION

High Accuracy of real-fake binary classification \rightarrow Best result with **version2** + **autoencoder** \rightarrow Possibility to use QCNN as a discriminator in quantum GAN

Accuracy of binary classification varies depending on the classes $(50\% \sim 97\%)$

High accuracy for multiclass classification of MNIST dataset (except for class 2), but more simulations and studys are required for EuroSAT dataset

class classification. labels

Figure 6: Confusion matrix of 4-class classification for MNIST dataset with U_6 circuit.

roSAT dataset with U_6 circuit.

ONGOING RESEARCH

We are planning to increase the input feature size and investigate other feature extraction methods and convolution filters to improve the classification accuracy. Ultimately, we aim to use QCNN as a generator in the quantum GAN to generate Earth observation images with a classical (hybrid model) or a quantum discriminator (quantum model). The inverse transform of the features will be essential in this case.

MULTICLASS

We perform L-class classification by measuring the probability distribution for $\log_2(L)$ qubit and using categorical cross entropy.

ta Embedding	QCNN	
		$ \longrightarrow $

Figure 5: Schematic diagram of quantum circuit for four-

0.89	0.012	0.0041	0.095	- 0.
0	1	0.00088	0.0035	- 0.0
0.056	0.2	0.66	0.085	- 0.4
0.005	0.16	0.011	0.83	- 0.5
0	1	2	3	

Predicted labels

Predicted labels Figure 7: Confusion matrix of 4-class classification of Eu-