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Abstract

The problem of characterizing quantum channels arises in a number of contexts
such as quantum process tomography and quantum error correction. However,
direct approaches to parameterizing and optimizing the Choi matrix representation
of quantum channels face a curse of dimensionality: the number of parameters
scales exponentially in the number of qubits. Recently, Torlai et al. [2020] proposed
using locally purified density operators (LPDOs), a tensor network representation
of Choi matrices, to overcome the unfavourable scaling in parameters. While the
LPDO structure allows it to satisfy a ‘complete positivity’ (CP) constraint required
of physically valid quantum channels, it makes no guarantees about a similarly
required ‘trace preservation’ (TP) constraint. In practice, the TP constraint is
violated, and the learned quantum channel may even be trace-increasing, which
is non-physical. In this work, we present the problem of optimizing over TP LPDOs,
discuss two approaches to characterizing the TP constraints on LPDOs, and outline
the next steps for developing an optimization scheme.

1 Introduction

Quantum channels describe the physical evolution of quantum systems, which are generally
represented as unit-trace positive semi-definite (PSD) density matrices. A physically valid quantum
channel must preserve the constraints on input density matrices by satisfying a ‘complete positivity’
(CP) condition (which ensures that PSD inputs are mapped to PSD outputs), and a ‘trace preservation’
(TP) condition (which ensures that the channel preserves the trace of the inputs). The problem
of optimization over physical CPTP quantum channels is encountered in a variety of applications.
Quantum process tomography (QPT) aims to characterize the quantum channel by learning it from
measurement data. In quantum error correction, we may wish to optimize over quantum channels to
design error-correcting codes for a given error model. Choi matrices are a convenient representation of
quantum channels for such optimization problems since the CPTP constraints can be easily specified:
the CP condition amounts to a PSD requirement on the matrix, and the TP condition is the requirement
that the partial trace over the output subsystems is the identity on the input subsystems.

However, the number of parameters characterizing a Choi matrix scales exponentially with the number
of qubits. For an N -qubit quantum channel, the Choi matrix has dimension 22N ×22N , making it
intractable to directly optimize over the full matrix for a large number of qubits. One approach that
avoids this curse of dimensionality is to factorize the Choi matrix into a matrix product operator (MPO)
consisting of a series ofN compact tensor cores. However, such an MPO must still represent quantum
channels which are CP and TP, both of which are non-trivial constraints that must be explicitly satisfied
in the optimization algorithm. Recently, Torlai et al. [2020] proposed parameterizing and optimizing
quantum channels in the process tomography setting using locally purified density operators (LPDOs),
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a tensor network factorization that is guaranteed to satisfy the CP requirement by design [Werner et al.,
2016]. They show how LPDO representations of quantum channels can be learned using gradient
descent with a maximium likelihood objective on several synthetic datasets.

While the LPDO structure forces its corresponding Choi matrix to satisfy the CP constraint, it makes no
guarantees about the TP constraint. Torlai et al. [2020] argue that as the amount of data increases, their
approach will naturally produce a TP LPDO. In practice, they recommend penalizing the maximum
likelihood objective by an amount proportional to the TP violation. However, as demonstrated on some
small-scale synthetic experiments, this strategy can still only approximately satisfy the TP constraint;
the TP violation is many orders of magnitude above machine precision. Moreover, there is no known
scheme to even project an arbitrary LPDO onto the set of trace-preserving LPDOs or Choi matrices
without first reconstructing the full Choi matrix, which would defeat the purpose of the tensor network
approximation. For various applications, it may be desirable to parameterize and learn a physically
valid LPDO structure that also satisfies the TP constraint. This brings us to the problem we consider in
this paper: how can we parameterize and optimize trace-preserving LPDOs? Answering this question
will unlock the ability to employ physical LPDO approximations of quantum channels for various
tasks including quantum process tomography and quantum error correction, particularly for large
quantum systems with many qubits.

We make the following contributions in this paper: 1) we pose and discuss the problem of parameter-
izing TP LPDOs, 2) we show that a naive constraint imposed independently on each LPDO tensor core
is sufficient to guarantee the TP property of the LPDO, but is too strict to capture simple 2-qubit gates,
3) we provide an alternative characterization of the constraints on each LPDO tensor core, including
a result that the tensor cores of TP LPDOs must be orthonormal 2-frames under a metric induced by the
other cores, and 4) and chart the path forward for developing an optimization scheme for TP LPDOs.
We intend for this work to discuss the prospects of developing an optimization algorithm for LPDO
decompositions of physically valid quantum channels.

The rest of this paper is structured as follows: in Section 2, we provide some preliminaries on quantum
channels, Choi matrices, and LPDOs; in Section 3, we discuss TP LPDOs and two different approaches
to constraining LPDOs to satisfy the TP constraint, and we conclude in Section 4 with some thoughts
on directions for future work.

2 Quantum Channels, Choi Matrices, and LPDOs

Quantum Channels We consider a quantum channel acting on a system of N qubits. Let HA
denote the 2N -dimensional Hilbert space of pure input states with basis states {|σ〉} andHB denote
the 2N -dimensional Hilbert space of pure output states with basis states {|τ 〉}. Mixed input and output
states live inL(HA) andL(HB), which are spaces of unit-trace, positive semi-definite (PSD) density
matrices. A quantum channel is a linear map E :L(HA)→L(HB) from density matrices in L(HA)
to density matrices inL(HB). Such a map satisfies two1 constraints: 1) it must be completely positive
(CP), i.e., preserve not only the PSD property of input density matrices, but also the PSD property
of input density matrices when coupled with an arbitrary dimensional ancilla system, and 2) it must
be trace-preserving (TP), i.e., leave the trace of input density matrices unchanged.

Choi Matrices A quantum channel E : L(HA) → L(HB) can be represented by a 22N×22N
complex-valued Choi matrix as ΛE =

∑
σ,τ |τ 〉〈τ ′|⊗E (|σ〉〈σ′|). This permits a simple character-

ization of the CP-TP constraints: the CP conditions amount to a requirement that ΛE be a PSD matrix,
and the TP condition requires that the partial trace over the output states be identity trB(ΛE)=I2N .
These constraints are illustrated in the language of tensor diagrams in Figure 1a. We can think of the
Choi matrix as having a block structure, where the input basis statesσ,σ′ pick out a block of the Choi
matrix, and output basis states τ ,τ ′ pick out a specific entry within the block. This block structure
is illustrated in Figure 1b.

The task of estimating the Choi matrix corresponding to a quantum channel (process tomography)
is more complicated than learning quantum states (state tomography). While the Choi-Jamiolskowski
isomorphism [Choi, 1975, Jamiołkowski, 1972] gives a connection between bipartite states and Choi
matrices, this is not a true isomorphism [Jiang et al., 2013] since the TP condition requires the input

1The channel must also preserve the Hermiticity of input density matrices, but this is already guaranteed
by the CP constraint.
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(a) The complete positivity (left) and trace
preservation (right) constraints on Choi
matrices.

(b) Block structure of Choi matrix; indices
(σ, σ′) pick out matrix blocks and indices
(τ,τ ′) pick out elements within the blocks.

Figure 1: Illustrations of Choi matrices and their properties

subsystem of the bipartite state corresponding to a Choi matrix to be the identity. In other words,
diagonal blocks of the Choi matrix must be trace unit trace, and off-diagonal blocks must be zero trace.
Thus, the problem is not as simple as learning parameters first and renormalizing with a constant at the
end, since the diagonal blocks and off-diagonal blocks are (trace) normalized differently. One solution
is to simply learn a Choi matrix via unconstrained optimization and project it onto the set of CP-TP
matrices at the end [Knee et al., 2018, Surawy-Stepney et al., 2021]. Another solution is to observe
that a Choi matrix is CP-TP if and only if the tensor core M̂ in Figure 1a (square root of the Choi
matrix [ΛE ]

σ′,τ ′

σ,τ =(M̂σ,τ
µ )†M̂σ′,τ ′

µ ) lives on a Stiefel manifold2, and use Riemannian optimization
techniques [Luchnikov et al., 2021] to learn the Choi matrix. This is an important characterization
of the TP constraint, so we state it formally below for later use.

Remark 1. Let [ΛE ]σ
′,τ ′

σ,τ = ([M̂]σ,τµ )†[M̂]σ
′,τ ′

µ and [M]στ ,µ be a reshape of [M̂]σ,τµ . Then, the TP
condition on the Choi matrix is equivalently stated as M†M=I.

However, the other complication in estimating Choi matrices from data is more severe: since the
number of parameters scales exponentially with the number of qubits, learning the Choi matrix quickly
becomes intractable for large quantum systems. This general problem setting is fertile ground for
tensor network solutions, which we consider next.

Figure 2: Tensor network diagram of an LPDO

Locally Purified Density Operators The Locally Purified Density Operator (LPDO) is a tensor
network proposal for modeling Choi matrices [Werner et al., 2016, Torlai et al., 2020]. It consists
of 2N cores (N cores and their conjugates) in the structure shown in Figure 2. The j-th tensor core
of an LPDO contains the following modes: one input mode σj or σ′j , one output mode τj or τ ′j , one
purification mode νj , and one or two bond modes µj−1,µj or µ′j−1,µ

′
j . Denoting the collection of

core tensor parameters as θ, the Choi matrix corresponding to such a tensor network is given written as:

[Λθ]
σ′,τ ′

σ,τ =
∑
µ,µ′,ν

N∏
j=1

[Kj ]νj ,µj
σj ,τj ,µj−1,[Kj ]

σ′j ,τ
′
j ,µ
′
j

νj ,µ′j−1
(1)

For ease of exposition, in the rest of this paper we fix the dimension of the tensor modes as
|σj |= |σ′j |=2, |τj |= |τ ′j |=2, |νj |=P , and |µj |=D for all j. Each core hasO(PD2) parameters,

2A Stiefel manifold V(Cn×k) is the set of matrices {κ∈Cn×k|κ†κ=I}
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so the LPDO tensor network decomposition approximates a 22N×22N Choi matrix withO(NPD2)
parameters. Additionally, an LPDO decomposition with sufficiently large bond and purification
dimensions can represent any Choi matrix [De las Cuevas et al., 2013]. One advantage of the LPDO
tensor network is that it guarantees that the corresponding Choi matrix is PSD (i.e., represents a CP
quantum channel) by design. From an optimization perspective, this means that a learning algorithm
for LPDOs does not need to explicitly worry about satisfying the CP constraint.

Leveraging these properties, Torlai et al. [2020] recently proposed a gradient-descent based
maximum-likelihood algorithm to learn LPDO approximations of Choi matrices for quantum process
tomography. While this procedure yields LPDOs that are always CP, there is no guarantee that the
learned LPDO satisfies the TP condition. Torlai et al. [2020] propose adding a TP violation penalty
term to their maximum likelihood objective to push the solution towards TP LPDOs, and note that
the TP violation shrinks to zero in the limit of infinite data. However, in practice, with limited data the
TP violation can still be non-negligible and the learned LPDO can be a non-physical trace-increasing
channel. Using this method to learn some simple 2-qubit gates, we find that the TP violation (measured
as the Frobenius norm error of the partial trace of the learned Choi from the identity) is on the order
of 10−2, and increasing the penalty for TP violation slows the convergence of the algorithm without
significantly reducing TP violation error (see Figure 7 in Appendix B). There is also no known scheme
to project the learned LPDO to the nearest TP LPDO without reconstructing the full Choi matrix,
which would defeat the purpose of using the LPDO decomposition in the first place. Typical projection
schemes alternate between projections onto the CP set (violating TP) and projections onto the TP
set (violating CP), but the LPDO structure does not allow CP violations.

3 Trace Preserving Locally Purified Density Operators

In order to learn a physically valid Choi matrix through its LPDO decomposition, we need to place
additional constraints on the LPDO structure. We first explore a naive constraint we can impose
independently on each tensor core that is sufficient to guarantee that the LPDO satisfies a global TP
condition. In practice however, this constraint is too strong and is unable to capture simple 2-qubit
unitary gates, let alone more complicated channels. We then present a more involved discussion of
the TP condition, and provide a more general characterization of TP LPDOs.

Figure 3: The TP constraint on an LPDO representing a quantum channel. The blue connections
correspond to taking the partial trace with respect to the output indices, which results in the identity.

3.1 A Simple Sufficient Condition for TP LPDOs

One simple approach to ensuring TP LPDOs is to force every coreKj ,Kj to function as a local quantum
channel acting on the “outputs” from cores Kj−1,Kj−1. To do this, we will use the Kraus operator
formulation of quantum channels: every CP-TP quantum channel can be written using a set of Kraus
operators E(ρ)=

∑
iKiρK

†
i , where the set of Kraus operators must satisfy the condition

∑
iK
†
iKi=I.

As noted by various authors [Bruzda et al., 2009, Pechen and Rabitz, 2014, Srinivasan et al., 2018,
Adhikary et al., 2020], vertically stacking a set of Kraus operators produces a matrix that lies on a
Stiefel manifold of dimension 2PD×2D, i.e., if κ=[K1,...,KW ]T , then

∑
iK
†
iKi=κ

†κ=I [Kraus,
1971, Gheondea, 2010]. Now, the idea is to interpret every core as a set of Kraus operators on a
Stiefel manifold (allowing us to use Riemannian optimization techniques on each tensor core), so the
application of a sequence of local quantum channels is also a global quantum channel and recovers the
global TP condition. To achieve this, we make a slight modification to the LPDO structure by adding
an extra mode to the cores at theN -site, and we call this extended LPDO an xLPDO (Figure 4). Note
that the extended edge of the xLPDO can be fused with the core’s purification dimension to recover
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the LPDO structure, so it is still in the same class of tensor networks. We state the sufficient condition
formally below. We give a diagrammatic proof in Figure 4 and leave the algebraic proof to the appendix.
Lemma 1 (Sufficient Constraint for TP LPDO). Let κj be a flattening of the tensor core Kj into a
matrix with rows associated with νjτjµj and columns with σjµj−1. If each κj satisfies κ†jκj=I for
1≤j≤N , , i.e., each κj is on the Stiefel manifold, the LPDO satisfies the global TP constraint.

Figure 4: Top: Illustration of xLPDO (left) and sufficient local Stiefel manifold constraint on each
core for TP LPDO (right), Bottom: Graphical proof of Lemma 1

While Lemma 1 gives a simple constraint that can easily parameterize TP LPDOs, it is too strict. Using
a maximum likelihood approach similar to Torlai et al. [2020] but constraining the LPDO cores to
lie on a Stiefel manifold3, we find that the procedure cannot learn even elementary 2-qubit gates (we
compare the true Choi matrix of a 2-qubit CNOT and the learned Choi matrix in Figure 8 in Appendix
C). This assumption forces each core to independently contribute to the TP requirement, preventing
a TP violation in one core to be ‘compensated’ by another core. Thus, such a restriction to independent
constraints on each core does not produce a sufficiently general parameterization of Choi matrices.

3.2 A Necessary and Sufficient Constraint for LPDOs

Here, we propose a more general pair of conditions on the tensor cores so the LPDO satisfies a global
TP constraint. As we will see, while these constraints are necessary and sufficient for the LPDO to
be TP, translating these constraints into a parameterization remains an open problem.

We begin by considering the ‘bottom half’ of the LPDO, consisting of coresK1,...,KN without their con-
jugates. If we fuse indices νj ,τj into a single index ωj so each boundary (non-boundary) core is a third
(fourth) order tensor, we can view the resulting tensor networkM as a matrix product operator (MPO)
[Murg et al., 2008] with coresMj . If we treatM as the tensor network decomposition of a matrix [M]σω
with rows associated withω and columns associated withσ, then as in Remark 1, the TP constraint
can be stated as the condition M†M=I. Thus, we can also think of the problem of finding TP LPDOs

Figure 5: Left: Viewing the ‘bottom-half’ of an LPDO as an MPO by fusing the indices {νi,τi} into
a single index ωi, Right: TP constraint specified on MPO

3We compute the gradient of the log-likelihood with respect to each tensor core and apply the algorithm from
Wen and Yin [2013] to retract the gradient at each core onto the local Stiefel manifold.
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as one of finding an MPO decompositionM of an isometry M living on the Stiefel manifold. Now,
we state an alternative characterization of the TP constraint4, followed by a geometric interpretation.
Theorem 1 (Necessary and Sufficient Condition for TP LPDO). Let [Mj ]

σj
ωj ,µj ,µj−1 be an MPO core

associated with a reshaped LPDO core [Kj ]
σj
τj ,νj ,µj ,µj−1 where τj ,νj are fused into a single index ωj .

Then, the LPDO is TP if and only if the MPO coresMj satisfy the conditions in Figure 6a and 6b.

(a) The MPO must be decomposable into factors with bonds of unit Schmidt-rank

(b) Factors must be identity (c) Definitions of ρLj and ρRj

Figure 6: (a-b) Pair of conditions which together are necessary and sufficient for MPOM of an LPDO
to be TP. (c) Definition of the matrices ρLj and ρRj appearing in the above conditions, which are given
by a weighted trace over all σj indices to the left or right of the i-th core.

Remark 2. Theorem 1 states that if an LPDO Λθ is TP, its corresponding MPOMmust satisfy the
condition in Figure 6b. This condition can be written as the requirement that M†

jGjMj = I where
Gj = (ρLj ⊗ I⊗ρRj ). Thus, the TP condition on LPDOs requires that each MPO core Mj be an
orthonormal 2-frame under the metric Gj induced by the other tensor cores.

Theorem 1 illustrates the difficulty in extracting a simple parameterization of TP LPDOs; modifying
any coreMj affects ρL−j and ρR−j on all the other cores, so it is unclear how to modify a core to preserve
TP. Thus, the problem of finding a TP parameterization of LPDOs remains open. Nevertheless, our
characterization in Theorem 1 moves us closer towards a parameterization of TP LPDOs. If we are
able to describe how the parameters at one core of a TP LPDO may be varied without violating the
TP constraint, we speculate that a natural approach would be a ‘sweeping’ optimization scheme that
holds other cores fixed while optimizing each core sequentially.

4 Conclusion and Future Work

We discussed the potential of using locally purified density operators (LPDOs) for tractably modeling
quantum channels. Although LPDOs satisfy the CP requirement of quantum channels by design, we
showed that imposing the TP constraint presents further challenges. We showed that imposing a simple
condition that each LPDO tensor core independently be on the Stiefel manifold is sufficient to guarantee
TP, but is too strict to capture even simple 2-qubit gates. We also gave a necessary and sufficient
description of TP LPDOs with a geometrical interpretation of the constraints on each core. However,
converting this characterization of TP constraints into a parameterization in an optimization scheme
remains an open question. Resolving this could unlock the potential of using LPDOs to tractably model
quantum channels for applications such as quantum process tomography or quantum error correction.

4A very similar pair of constraints were given in Cirac et al. [2017] and Şahinoğlu et al. [2018] for MPOs
representing unitary matrices, but under the assumption that all coresMj are identical and the MPO has periodic
boundary conditions. In that setting, these constraints only parameterize a subset of “simple” unitary MPOs,
and require slightly stronger assumptions (and different proof techniques) to prove necessity.
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A Proofs

Proof of Lemma 1. First, we observe that Equation 1 can be written as follows:

[Λθ]
τ ′,τ
σ′,σ=

∑
νj

(K
σ′1
τ ′1,ν1

)†···(Kσ′N
τ ′
N
,νN

)†KσN
τN ,νN ···K

σ1
τ1,ν1 (2)

The TP requirement on Choi matrices is that trB(Λθ) = I, or equivalently, the trace of diagonal
blocks of the Choi matrix is 1 and trace of off-diagonal blocks is 0:

∑
τ=τ ′ [Λθ]

τ ,τ ′

σ′=σ = 1 and∑
τ=τ ′ [Λθ]

τ ,τ ′

σ′ 6=σ=0. Observe that:

∑
τ=τ ′

[Λθ]
τ ′,τ
σ′=σ=

∑
τ1,...,τN−1

∑
ν1,...,νN−1

(Kσ1
τ1,ν1)

†···

 ∑
τN ,νN

(KσN
τN ,νN )†KσN

τN ,νN

···Kσ1
τ1,ν1

=
∑

τ1,...,τN−1

∑
ν1,...,νN−1

(Kσ1
τ1,ν1)

†···
(
κσN †κσN

)
···Kσ1

τ1,ν1

(3)

But κσ
†
NκσN = I, so we can identically repeatedly simplify this sum until we have∑

τ1

∑
ν1
(Kσ1

τ1,ν1)
†Kσ1

τ1,ν1 = 1, showing that diagonal blocks trace to 1. Taking the trace of
the off-diagonal blocks proceeds similarly; however, since σj 6= σ′j for some j, we will eventually
have the term κσ

′
j†κσj =0, which will send the trace of the off-diagonal block to zero.

Proof of Theorem 1.

(⇐) Assume the conditions in Figures 6a and 6b hold. Then,

(⇒)

We start by assuming that that the LPDO is trace-preserving, and thus satisfies the following condition.

Now, from Theorem 2 in Perez-Garcia et al. [2006], we know that for every i-th core, there exist
matrices ρLj and ρRj such that our LPDO can be written as
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with

Now, to identify ρLj and ρRj , let us define ρ̃Lj and ρ̃jR without the scalar factors 2−N+j and 2−j+1 in
Figure 6c, and consider the contracted LPDO representation over σ′−j :

But by the TP assumption,

Thus, ρLj =2−N+j ρ̃Lj and ρRj =2−j+1 ρ̃Rj . So, we have
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B TP Violation of Unconstrained LPDO

Figure 7: Learning simple quantum channels using the method of Torlai et al. [2020] with various
penalties λ on TP violation. Top: Fidelity of the learned Choi matrix and the true Choi matrix,
Bottom: TP Violation as Frobenius norm distance of partial trace of learned Choi matrix from identity.
Increasing the penalty term does not affect TP violation error, but does slow convergence.

C Lemma 1 is Too Strict

Figure 8: Left: Choi matrix of 2-qubit CNOT gate. The yellow and dark-blue elements correspond
to non-zero and zero entries of the matrix. Right: Choi matrix of TP LPDO learned from tomography
data whose cores are constrained according to Lemma 1. The learned matrix fails to capture the
non-zero elements in the off-diagonal blocks.
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