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Abstract

The attention mechanism is at the core of state-of-the-art Natural Language Process-
ing (NLP) models, owing to its ability to focus on the most contextually relevant
part of a sequence. However, current attention models rely on "flat-view" matrix
methods to process sequence of tokens embedded in vector spaces, resulting in
exceedingly high parameter complexity for practical applications. To this end,
we introduce a novel Tensorized Spectral Attention (TSA) mechanism, which
leverages on the Graph Tensor Network (GTN) framework to efficiently process
tensorized token embeddings via attention based spectral graph filters. By virtue of
multi-linear algebra, such tensorized token embeddings are shown to effectively
bypass the Curse of Dimensionality, reducing the parameter complexity of the
attention mechanism from exponential to linear in the weight matrix dimensions.
Furthermore, the graph formulation of the attention domain enables the processing
of tensorized embeddings through spectral graph convolution filters, which further
increases its expressive power. The benefits of the TSA are demonstrated through
five benchmark NLP experiments, where the proposed mechanism is shown to
achieve better or comparable results against traditional attention models, while
incurring drastically lower parameter complexity.

1 Introduction

The attention mechanism has become the de-facto tool of choice for Natural Language Processing
(NLP) tasks, owing to its ability to capture context dependent relationships in data and thus focus on
the most relevant part of a sequence [1]. Despite being at the core of many state-of-the-art language
models [2–4], the attention mechanism is known to suffer from the Curse of Dimensionality, whereby
the parameter complexity increases exponentially with the size of the associated weight matrices
[5]. To alleviate the complexity issues in attention models, we introduce the Tensorized Spectral
Attention (TSA) mechanism. The proposed TSA builds on a recent Graph Tensor Network (GTN)
framework [6] [7], which drastically reduces the complexity costs through Tensor Decomposition
(TD) techniques, while at the same time boosting the expressive power of the attention operation via
spectral graph convolutions.

Contributions: The contributions of this work are threefold. First, we generalize the attention
mechanism to make it possible to process token embeddings in a higher-order tensor space, as
opposed to the traditional vector space embeddings. By virtue of its multi-modal structure, such
a tensorized embedding benefits from the power of multi-linear algebra and the associated tensor
decomposition algorithms, hence bypassing the Curse of Dimensionality aspect associated with
traditional NLP methods. Second, we introduce a novel formulation of the attention mechanism as a
graph filter operation, which enables the processing of tensorized embeddings through spectral graph
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convolution filters. Third, a unified GTN framework is presented that integrates the advantages of
both tensors and graphs in the context of attention, resulting in a highly expressive attention model
with drastically low complexity costs.

Related Work: Tensor-Train Decomposition (TTD) [8] has been used to compress embedding layers
for NLP tasks with large vocabularies in [9], although it has not been employed to compress the
attention mechanism directly. The Khatri-Rao product was employed to develop a tensor based
attention with lower complexity in [10], but it focuses on dimension-wise attention instead of
token-wise attention, and is limited to only a low-dimensional order-3 tensor for processing vector
embeddings. Block-Term Tensor Decomposition [11] has also been used to propose a multi-linear
attention mechanism in [5], but it was still limited to a low-dimensional order-3 tensor for processing
vector embeddings, and could only approximate the classical attention mechanism if the embedding
dimension is equal to the length of the sequence. The attention mechanism has been applied to
graph neural networks both in the spatial and spectral domains [12–14], but the attention operation
was used in a masking context with a priori defined graph edges, and the application was limited to
semi-supervised learning. Overall, to the best of our knowledge, our work is the first to extend the
attention mechanism to process tensor embeddings of arbitrarily high dimensions, by leveraging on
the expressive power of tensor networks and spectral graph convolutions.

Paper Organization: In Section 2, we introduce the theoretical background necessary for this work.
A graph formulation of the spectral attention mechanism is next introduced in Section 3, which is
then generalised to the tensor domain in Section 4. All of the derived concepts are then combined in
Section 5. We finally validate the proposed framework via extensive experiments in Section 6, with
practical limitations discussed in Section 7 and conclusions in Section 8.

2 Preliminaries

2.1 Tensor Algebra

Nomenclature: A tensor of order N , X ∈ RI1×···×IN (denoted by a calligraphic font), is a multi-
dimensional array, where In is the size of its n-th mode, for n = 1, . . . , N . Special cases of tensors
include matrices (denoted by bold capital letters, e.g., X ∈ RI1×I2) as order-2 tensors, vectors
(denoted by bold lower-case letters, e.g., x ∈ RI1 ) as order-1 tensors (N = 1), and scalars (denoted
by lower-case letters, e.g., x ∈ R) as order-0 tensors. A specific entry of a tensor X ∈ RI1×···×IN is
given by xi1,...,iN ∈ R. The tensor indices in this paper follow the Little-Endian convention [15].

Kronecker Product: A (left) Kronecker product between two tensors, A ∈ RI1×···×IN and B ∈
RJ1×···×JN , denoted by ⊗, yields a tensor C ∈ RI1J1×···×INJN , of the same order, with entries
ci1j1,...,iN jN = ai1,...,iN bj1,...,jN , where injn = jn + (in − 1)Jn [16].

Hadamard Product: The Hadamard (element-wise) product between two tensors of the same
dimensionality, A ∈ RI1×···×IN and B ∈ RI1×···×IN , denoted by�, yields a tensor, C ∈ RI1×···×IN ,
where ci1,...,iN = ai1,...,iN bi1,...,iN .

Matricization and Tensorization: The mode-n matricization of a tensor X ∈ RI1×···×IN , denoted
by mat(·), reshapes the multidimensional array into a matrix X(n) ∈ RIn×I1I2···In−1In+1···IN with
(x(n))in,i1...in−1in+1...iN

= xi1,...,iN . The inverse process, Tensorization, is denoted by ten(·).

Tensor Contraction: An (m,n)-contraction [16], denoted by ×mn , between an order-N tensor
A ∈ RI1×···×In×···×IN and an order-M tensor B ∈ RJ1×···×Jm×···×JM , where In = Jm, yields a
third order-(N +M − 2) tensor, C ∈ RI1×···×In−1×In+1×···×IN×J1×···×Jm−1×Jm+1×···×JM , where
ci1,...,in−1,in+1,...,iN ,j1,...,jm−1,jm+1,...,jM =

∑In
in=1 ai1,...,in−1,in,in+1,...,iN bj1,...,jm−1,in,jm+1,...,jM .

Tensor Decompositions: Tensor Decomposition (TD) methods approximate high-order, large-
dimensional tensors via contractions of smaller core tensors, therefore drastically reducing the com-
putational complexity for tensor operations while preserving the data structure [17]. We here consider
the Matrix Product Operator (MPO) definition of the Tensor-Train decomposition (TTD) [8], a highly
efficient TD method that can decompose a large order-2N tensor, X ∈ RI1×J1×I2×J2×···×IN×JN ,
into smaller contracting core tensors, G(n) ∈ RRn−1×In×Jn×Rn , as X = G(1)×1

4G(2)×1
4· · ·×1

4G(N),
where the set of Rn for n = 0, . . . , N with R0 = RN = 1 is referred to as the TT-rank. The compres-
sion properties of TTD can be applied to significantly compress neural networks while maintaining
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comparable performance [18, 19]. Finally, Quantized TTD (QTTD) achieves super-compression if
In = Jn = 2 for all n, and Rn = 2 for n = 1, . . . , N − 1.

2.2 Spectral Graph Neural Networks

Graph Matrices: A graph, G = {V, E}, is defined by a set of L vertices (or nodes) vl ⊂ V for
l = 1, . . . , L, and a set of edges connecting the l1th and l2th vertex, el1,l2 = (vl1 , vl2) ∈ E , for
l1 = 1, . . . , L and l2 = 1, . . . , L. A graph can be fully described by the weighted adjacency matrix,
A ∈ RL×L, such that al1,l2 > 0 if el1,l2 ∈ E , and al1,l2 = 0 if el1,l2 /∈ E . Alternatively, a graph can
be described in terms of its Laplacian matrix, L ∈ RL×L, defined as L = D− A, where D ∈ RL×L
is the diagonal degree matrix such that dl1,l1 =

∑
l2

al1,l2 [20]. If the edge weights are not already
given in a problem setting, they can be defined based on a pair-wise similarity function, g(·), such
that al1,l2 = g(zl1 , zl2), where zl1 and zl2 are the attributes associated with the l1-th and l2-th vertices
[21].

Graph Fourier Transform: If the underlying graph is undirected, then the adjacency matrix admits
an eigen-decomposition as A = ΦΛΦT , where Φ is the matrix of orthonormal eigenvectors, and Λ is
the diagonal matrix of real-valued eigenvalues. In spectral graph theory, the eigenvectors (the columns
of Φ) are regarded as the graph Fourier bases of a given graph domain, whereby the corresponding
eigenvalues in Λ represent the associated frequencies [20]. More specifically, given a graph signal,
x ∈ RL, where a scalar value is associated with each of the L vertices, its graph Fourier transform
can be computed as x̂ = ΦT x, while the inverse Fourier transform can be computed as x = Φx̂ [22].

Remark 1. The Graph Fourier Transform can be defined both in terms of the adjacency matrix
and the Laplacian matrix, albeit with the opposite eigenvalue ordering. For instance, the smoothest
eigenvector (lowest frequency) is associated with the largest eigenvalue for the adjacency matrix case,
but it is associated with the smallest eigenvalue in the Laplacian matrix case [22].

Spectral Graph Convolution: A Spectral Graph Neural Network learns a diagonal matrix of
spectral multipliers, {Γp}, for p = 1, . . . , P , to extract features from a graph signal, x, via the
spectral convolution operation, y = ε(

∑P
p=1 ΦΓpΦ

T x) [23], where ε(·) is an optional activation
function. This follows from the convolution theorem where the spatial convolution of two signals
correspond to their product in the Fourier domain.

2.3 Dot-Product Attention

Query, Key, Value: Given an input time-series matrix, X ∈ RL×I , where I features are indexed
along L time-steps, the dot-product attention [1] computes: (i) Q ∈ RL×J , a query-representation
of the input data generated by the transform, Q = XW(q), where W(q) ∈ RI×J is a trainable query-
weight matrix; (ii) K ∈ RL×J , a key-representation of the input data generated by the transform,
K = XW(k), where W(k) ∈ RI×J is a trainable key-weight matrix; (iii) V ∈ RL×J , a value-
representation of the input data generated by the linear transform, V = XW(v), where W(v) ∈ RI×J
is a trainable value-weight matrix.

Attention Coefficients: Given Q and K, the self-attention coefficient matrix, Θ ∈ RL×L, is com-
puted as Θ = σ( 1√

dk
QKT ), where σ(·) is a softmax activation function and 1√

dk
is a scaling

factor. More specifically, the attention coefficient between the l1-th and l2-th time-step, θl1,l2 ,
is defined as the inner product between the l1-th query vector, ql1 , and l2-th key vector, kl2 , as
θl1,l2 = σ( 1√

dk
qTl1kl2).

Multi-Head Attention: Given Θ, the attention mechanism then generates the final output, Y ∈
RL×J , as Y = ΘV. For multi-head attention, this can be repeated H times using a set of attention
coefficient matrices, {Θ1, . . . ,ΘH}, to generate H different outputs, {Y1, . . . ,YH}, that are then
concatenated and combined to produce the final output, Y.

2.4 Graph Tensor Networks

General Recurrent Graph Tensor Network: Consider a sequence learning problem where the
input data, X ∈ RL×J , is a time-series matrix with J features indexed along L time-steps. For a so
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defined input matrix, a Recurrent Graph Tensor Network (RGTN) [7] extracts time-series features,
Y ∈ RL×J , by applying a tensor contraction based forward pass, Y = ten(I + A⊗ P)×1,2

3,4 X, where
I ∈ RLJ×LJ is an identity matrix, P ∈ RJ×J is an idempotent matrix modelling the propagation of
information between successive time-steps, and A ∈ RL×L is a time-domain graph adjacency matrix.
More specifically, the time-adjacency matrix, A, considers each of the L time-steps as a node of a
time-domain graph, where the l1-th and l2-th time-steps are connected with weight, al1,l2 , such that
al1,l2 = cl2−l1 for l2 > l1, and al1,l2 = 0 otherwise, where c is a damping constant strictly less than
1. The condition l2 > l1 ensures that A is an upper-triangular matrix to reflect the structured flow of
information over time, as past information can influence the future states but not vice-versa.

Fast Recurrent Graph Tensor Network: A low complexity version of RGTN was also proposed
in [7] by approximating P ≈ I, which simplifies the RGTN forward pass to Y = (I + A) ×1

2 X.
For multi-modal input features, the RGTN forward pass can be easily extended to tensor form,
Y = (I + A) ×1

2 X , where X ∈ RL×J1×···×JN is a time-series tensor of order-(N + 1), which
contains features of dimensionality J1 × · · · × JN for each of the L time-steps.

Bi-Directional Graph Tensor Network: The time-adjacency matrix, A, was originally developed
to model sequential data. However, more generally, it can be replaced by other adjacency matrices
depending on the demands of an application [6]. For instance, for time-series applications where
the directed flow of information over time is not necessary, we can replace A with a bi-directional
time-graph adjacency matrix, Ω ∈ RL×L, defined as Ω = 1

2 (AT + A).

3 Spectral Attention

3.1 Time-Domain Attention Graph

We shall now introduce the notion of the time-domain attention graph. Given an input time-series
matrix, X ∈ RL×I , where I features are indexed along L time-steps, we compute: (i) K ∈ RL×J , a
key-representation of the input data generated by the transform, K = XW(k), where W(k) ∈ RI×J
is a trainable key-weight matrix; (ii) V ∈ RL×J , a value-representation of the input data generated
by the transform, V = XW(v), where W(v) ∈ RI×J is a trainable value-weight matrix.

Given K, the symmetric attention coefficient matrix, Θ ∈ RL×L, is next computed, where the
attention coefficient between the l1-th and l2-th time-step is defined as θl1,l2 = ε( 1√

dk
kTl1kl2) for

l1 6= l2 and θl1,l2 = 0 otherwise, with ε(·) as a relu activation function, 1√
dk

as a scaling factor, and
kl1 and kl2 as respectively the key-vectors at the l1-th and l2-th time-step. By viewing each of the L
time-steps as nodes of a time-domain graph [7], we can interpret Θ as an undirected graph adjacency
matrix, where the edge weight between the l1-th and l2-th vertices, θl1,l2 , is context dependent and
generated by a pair-wise similarity function parameterized by W(k), as discussed in Section 2.2.
Remark 2. The choice of a relu activation to generate the adjacency matrix, Θ, serves two purposes:
(i) the rectification promotes sparsity, which effectively reduces the number of connections between
the nodes in the graph domain, as the weights are reduced to zero; (ii) the resulting entries are strictly
non-negative, which is an usual assumption for weighted graph adjacency matrices.

Due to its dot product formulation, Θ is context dependent, but it is ignorant to the time-series
structure of the input data, which contains important sequence ordering information. To this end, we
incorporate the bi-directional time graph adjacency matrix, Ω, as discussed in Section 2.4, to define
the adjacency matrix of the time-domain attention graph, Ψ ∈ RL×L, as Ψ = Ω�Θ.
Remark 3. Unlike classical attention, the time-domain attention adjacency matrix, Ψ, is both time-
and context-aware. Indeed, given a signal x ∈ RL, the operation, y = Ψx, can be expressed in an
element-wise form, yl1 =

∑
l2∈Nl1

Θl1,l2Ωl1,l2xl2 . This represents a weighted sum of signals in the
neighbourhood of the l1-th time-step,Nl1 , with weights proportional to both the contextual relevance,
Θl1,l2 , and the time proximity, Ωl1,l2 , between tokens at time-steps l1 and l2.

3.2 Spectral Attention Filtering

By construction, Ψ is a symmetric graph adjacency matrix representing an undirected graph, which
admits an orthonormal eigen-decomposition of Ψ = ΦΛΦT , as discussed in Section 2.2. Generally,
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we can learn a filter, Γ, in the graph Fourier domain to perform spectral convolution on a graph signal
as y = ΦΓΦT x. To reduce the risk of over-fitting, we can restrict the class of graph filters to be a
polynomial function of the eigenvalues of order (K − 1) to ensure smooth spectral multipliers [23],
that is Γ = fα(Λ), such that fα(Λ) =

∑K−1
k=0 αkΛ

k, where {αk} is the set of filter coefficients.
This simplifies the spectral convolution to

y = ΦΓΦT x
= Φfα(Λ)ΦT x
= Φ(α0Λ

0 + α1Λ
1 + · · ·+ αK−1Λ

K−1)ΦT x
= (α0ΦΛ0ΦT + α1ΦΛ1ΦT + · · ·+ αK−1ΦΛK−1ΦT )x
= (α0Ψ

0 + α1Ψ
1 + · · ·+ αK−1Ψ

K−1)x
= fα(Ψ)x

(1)

To reduce the computational and parameter complexity of the proposed attention filtering operation,
y = fα(Ψ)x, we can restrict the order of the graph filter to K = 2, which simplifies (1) to
y = (α0I + α1Ψ)x. Furthermore, because Ψ is inherently trainable, the coefficient α1 can be
absorbed in Ψ and α0 can be set to 1, which simplifies the attention filtering to y = (I + Ψ)x.

Remark 4. Notice that the low complexity filtering operation, y = (I + Ψ)x, is a special case of
the RGTN forward pass discussed in Section 2.4, Y = (I + Ψ)×1

2 X , which generalizes the graph
filtering operation to process higher-order tensors.

Remark 5. The full order-(K − 1) filtering operation, y = fα(Ψ)x, operates in a (K − 1)-hop
neighbourhood in terms of node (or time-step) connections. The simplified attention filtering,
y = (I + Ψ)x, operates in a 1-hop neighbourhood. However, within the proposed model, we can
reach (K − 1)-hop neighbours by stacking (K − 1) layers of simplified attention filtering [24].

Finally, similar to the classical multi-head attention mechanism, we can repeat the attention filtering
operationH times, using a set of attention filters, {Ψ1,Ψ2, . . . ,ΨH}, to generateH different filtered
signals that can be then combined together to generate the final output.

⨀

𝚯𝛀

=

𝚿

Figure 1: Principle of the time-domain attention graph (in purple), computed from the bi-directional
time-graph (in red), and the symmetric attention coefficient graph (in blue), as a Hadamard product of
their adjacency matrices, Ψ = Ω�Θ. The graph vertices represent a sequence of tokens embedded
in the tensor space, which are interconnected with edge weights proportional to their time-distance,
Ωl1,l2 , and attention coefficient, Θl1,l2 , for l1 = 1, . . . , L and l2 = 1, . . . , L.

4 Tensorizing Attention

4.1 Tensorizing Input Data

Traditional NLP models process a sequence of tokens (e.g. words) of length, L, embedded in a vector
space of dimension, I , resulting in an input matrix, X ∈ RL×I . However, due to the "flat-view"
nature of matrix methods, performing attention on X incurs expensive matrix multiplications. This
results in high complexity costs, especially when working with large embedding dimensions.
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To alleviate the complexity costs of the attention mechanism, we embed the sequence of symbols
in the tensor space to generate the input tensor, X ∈ RL×I1×···×IN , and thus benefiting from the
ability of Graph Tensor Networks to operate with high-dimensional tensors at low-complexity. By
formulating the problem in the tensor space, we can leverage on the power of tensor networks to
drastically reduce the complexity needed to achieve high expressive power.

4.2 Tensorizing Large Dimensional Matrix Multiplications

Consider a large-dimensional matrix multiplication of the form, Y = XW, where the matrices
are of dimensionality Y ∈ RL×J , X ∈ RL×I , and W ∈ RI×J . Without loss of generality, let the
dimensionality of the considered matrices be factorizable as I = I1×· · ·×IN and J = J1×· · ·×JN .
This allows us to tensorize X ∈ RL×I to X ∈ RL×I1×···×IN , Y ∈ RL×J to Y ∈ RL×J1×···×JN ,
and W ∈ RI×J to W ∈ RI1×J1×I2×J2×···×IN×JN . In turn, this allows us to re-write the large-
dimensional matrix multiplication, which is ubiquitous to the attention mechanism, as a higher order
tensor contraction

Y = X ×1,3,5,··· ,2N−1
2,3,4,··· ,N+1 W (2)

By virtue of the above tensor structure, we can now apply Tensor-Train (TT) Decomposition to store
the weight tensor, W , in a low-rank Matrix-Product-Operator (MPO) form

W ≈ G1 ×1
4 G2 ×1

4 G3 ×1
4 · · · ×1

4 GN (3)
where Gn ∈ RRn−1×In×Jn×Rn for n = 1, . . . , N are referred to as the TT-cores, and the set
{R0, R1, . . . , RN} is the TT-rank of the TT decomposition, where R0 = RN = 1.
Remark 6. In the attention mechanism context, instead of learning a large dimensional weight
matrix, W, we can learn directly the low-rank TT-cores, Gn for n = 1, . . . , N , which reduces the
complexity from an exponential O

(∏N
n=1 InJn

)
= O

(
IJ
)
, to a linear O

(∑N
n=1Rn−1InJnRn

)
,

in terms of the dimensions In and Jn. This is highly efficient for low TT-rank and large number of
dimensions N .

By storing W in the TT format, we can express the large-scale contraction in (2), as a series of
smaller-scale tensor contractions

Y = X ×1,3,5,··· ,2N−1
2,3,4,··· ,N+1

(
G1 ×1

4 G2 ×1
4 G3 ×1

4 · · · ×1
4 GN

)
= X ×2

2 G1 ×2,1
2,N+3 G2 ×2,1

2,N+3 · · · ×
2,1
2,N+3 GN

(4)

To further reduce the parameter complexity, we can employ the notion of Quantized Tensor-Train
Decomposition (QTTD), by: (i) setting the dimensions I and J to be a power of 2, such that
In = Jn = 2 for n = 1, . . . , N , and (ii) setting the TT-rank Rn = 2 for n = 1, . . . , N − 1. This
effectively super-compresses the parameter complexity from an exponential

∏N
n=1 InJn = 4N to a

linear
∑N
n=1Rn−1InJnRn = 16(N − 1).

Remark 7. The use of the compressed TT format in (4) to replace all dense matrix multiplications
in the attention mechanism makes it possible to drastically reduce the parameter complexity from an
exponential one to a linear one in the tensor order N.

4.3 Tensorizing Attention Coefficients

To perform spectral attention filtering in the tensor space, we need to compute the attention coefficient
matrix, Θ, from the tensorized input. To achieve this, we can first compute the key-representation
of the input data, K ∈ RL×J1×···×JN , by employing (4), then compute the coefficients, θl1,l2 , as
θl1,l2 = ε( 1√

dk
〈Kl1 ,Kl2〉), where Kl1 ∈ RJ1×···×JN and Kl2 ∈ RJ1×···×JN are the slices of K at

the l1-th and l2-th time-steps. This is also equivalent to computing Θ = ε( 1√
dk
K×2,··· ,N+1

2,··· ,N+1 K) and
then setting its diagonal elements to zero.

5 Putting Everything Together

The Graph Tensor Network (GTN) based Tensorized Spectral Attention (TSA) is summarised in
Algorithm 1, which can be repeated for H different heads to perform multi-head TSA. In practice,
the condition In = Jn = 2 is set for Algorithm 1 to super-compress the parameter complexity costs.
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Algorithm 1: Tensorized Spectral Attention (TSA) Algorithm

Input :Data matrix X ∈ RL×I and time-domain adjacency matrix Ω ∈ RL×L
Output :Feature matrix Y ∈ RL×J
Initialize :Initialize Rn = 2 for n = 1, . . . , N − 1 and R0 = RN = 1

Initialize I1, . . . , IN such that
∏N
n=1 In = I

Initialize J1, . . . , JN such that
∏N
n=1 Jn = J

Initialize trainable key TT-cores G(k)
n ∈ RRn−1×In×Jn×Rn for n = 1, . . . , N

Initialize trainable value TT-cores G(v)
n ∈ RRn−1×In×Jn×Rn for n = 1, . . . , N

X ← ten(X) // Tensorization from X ∈ RL×I to X ∈ RL×I1×···×IN

K← X ×2
2 G

(k)
1 ×2,1

2,N+3 G
(k)
2 ×2,1

2,N+3 · · · ×
2,1
2,N+3 G

(k)
N // Key tensor

V ← X ×2
2 G

(v)
1 ×2,1

2,N+3 G
(v)
2 ×2,1

2,N+3 · · · ×
2,1
2,N+3 G

(v)
N // Value tensor

Θ← ε( 1√
dk
K×2,··· ,N+1

2,··· ,N+1 K) // Attention coefficient matrix
Θ← Θ− diag(Θ) // Remove diagonal
Ψ← Ω�Θ // Time-domain attention adjacency matrix
Y ← (I + Ψ)×1

2 V // Spectral attention filtering of the tensor embeddings
Y← mat(Y) // Matricization from Y ∈ RL×J1×···×JN to Y ∈ RL×J

I

that puppy

like

Token Sequence Tensor Embedding Value Tensors Spectral Convolution Output Tensors

Key Tensors Attention Graph

Figure 2: Principle of the tensorized spectral attention mechanism. A sequence of tokens are
embedded in the tensor space (in gray). The sequence of tensor embeddings are then mapped to
generate the key tensors, K (in orange), and the value tensors, V (in green). The key tensors are then
used to generate the adjacency matrix of the attention graph, Ψ, which is used to perform spectral
graph convolution on value tensors to generate the output tensors, Y (in blue).

6 Experimental Results

The performance of the proposed TSA was evaluated in terms of its parameter complexity, expressive
power, and performance on various Natural Language Processing (NLP) tasks. Experimental results
confirm the superiority of the proposed model against standard attention mechanisms, achieving a
better or comparable performance at a drastically lower complexity across five different datasets. The
full experiment code is available at www.github.com/gylx/Tensorized-Spectral-Attention.

Experiment Setting: To benchmark the performance of the proposed TSA against classical attention
mechanisms, we compared the training and testing accuracy of the considered models at different
complexity levels across five NLP benchmark datasets. More specifically, we compared the achieved
accuracy scores by varying the word embedding dimension in the attention layer while keeping all
other parameters constant, which resulted in models of varying expressive power and complexity.
This allowed us to analyse the performance-complexity trade-offs of the considered models. Finally,
the experiments were repeated over 5 independent trials for each benchmark dataset.
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Metrics: To evaluate the performance of the proposed model, we considered: (i) Training Accuracy
(TrA) as a measure of expressive power, (ii) Testing Accuracy (TeA) as a measure of performance,
and (iii) Number of Parameters (NP) as a measure of model complexity.

Datasets: Five benchmark NLP classification datasets were considered for the evaluation of the
TSA model: (i) Reuters Newswire1 (RN), (ii) 20 Newsgroups2 (NG), (iii) Drugs Review3 (DR), (iv)
Research Articles4 (RA), and (v) Spooky Authors Identification5 (SA). All datasets consist of text
data that were pre-processed as tokenized sequences of 200 words by considering the 20,000 most
common words in the dataset. A train-test split of 60%-40% was used for all datasets.

Baselines: We benchmarked the proposed Tensorized Spectral Attention (TSA) against Luong-style
Dot-Product Attention (DPA) and Bahdanau-style Additive Attention (ADA) based models. For a
fair comparison, all considered models have the exact same training setting and model architecture,
with the sole exception being the attention mechanism used. More specifically, we implemented a
seven-layer architecture consisting of: (i) word embedding layer, (ii) multi-head (H = 2) attention
layer (based either on the TSA, DPA, or ADA), (iii) global average pooling layer, (iv) drop-out layer
with 10% drop-out rate, (v) dense layer with 20 hidden units and relu activation, (vi) drop-out layer
with 10% drop-out rate, and (vii) dense layer with Softmax activation. The models were trained
using the categorical cross-entropy loss function with an Adam optimizer.

As discussed in Section 1, we did not compare the proposed TSA against the TensorCoder in [10]
due to its dimension-wise attention formulation, and the Multi-Linear Attention in [5] due to its
constraint on the embedding dimension, which has to be at least equal to the sequence length for a
fair comparison.

Implementation: All models were implemented using TensorFlow 2.4.0 and trained on a 2.4 GHz
8-Core Intel Core i9 CPU with 32GB RAM. The experiments took approximately 2 days to complete.
For additional details, please refer to the full code at the provided link.

Results: The experiment results are illustrated in Figure 3. Across varying levels of word embedding
dimensionality, the proposed TSA is shown to achieve better or comparable expressive power
(measured in training accuracy) and performance (measured in testing accuracy), while incurring
drastically lower complexity costs (measured in the number of parameters). Table 6 summarises the
results at a low complexity level of around 300 trainable parameters, which further highlights the
strong performance-to-complexity characteristics of the proposed TSA, as it achieved remarkably
better performances compared to standard attention mechanisms.

Table 1: Expressive power measured in training accuracy (TrA, top table), and performance measured
in testing accuracy (TeA, bottom table) of the considered models at a low complexity level (measured
in number of parameters, NP, of around 300) across five datasets (RN, NG, DR, RA, SA).

Metric Model RN NG DR RA SA
TrA (%) ADA 57.5± 2.7 48.7± 12.9 77.0± 1.9 76.0± 4.9 93.9± 1.2

DPA 55.7± 4.4 46.0± 10.0 74.7± 4.3 80.3± 2.4 92.6± 2.3

TSA 85.3± 1.0 96.9± 0.5 96.3± 0.2 90.2± 3.0 97.4± 0.4

TeA (%) ADA 58.4± 3.0 49.0± 13.1 77.6± 2.8 71.9± 3.2 81.3± 0.7

DPA 58.2± 3.6 49.0± 9.0 75.7± 4.5 71.8± 2.4 81.3± 1.6

TSA 73.9± 0.5 82.8± 1.0 87.7± 0.4 72.7± 0.9 80.6± 0.8

Remark 8. As shown in Table 1, at a low complexity level (using around 300 trainable parameters),
the proposed TSA framework achieved substantially better results than the classical attention model,
which generated poor performance due to the excessively small embedding dimension (I = 6) needed
to satisfy the low complexity requirement.

1Available at https://trec.nist.gov/data/reuters/reuters.html
2Available at http://people.csail.mit.edu/jrennie/20Newsgroups
3Available at https://archive.ics.uci.edu/ml/datasets/Drug+Review+Dataset+%28Drugs.com%29
4Available at https://www.kaggle.com/blessondensil294/topic-modeling-for-research-articles
5Available at https://www.kaggle.com/c/spooky-author-identification
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Figure 3: Performance comparison of the proposed Tensorized Spectral Attention (TSA), Dot-Product
Attention (DPA), and Additive Attention (ADA) models. The figure columns, from left to right,
correspond to the five considered datasets. The figure rows, from top to bottom, correspond to: (i)
embedding dimension vs number of parameters (complexity), (ii) embedding dimension vs training
accuracy (expressive power), and (iii) embedding dimension vs testing accuracy (performance).

7 Limitations and Future Work

The proposed QTTD approach (TTD with rank 2) achieves super-compression by reducing the param-
eter complexity optimally, but it does not guarantee optimal computational complexity. An important
future research direction thus concerns the determination of TTD rank for optimal computational
complexity.

8 Conclusion

We have introduced a novel Tensorized Spectral Attention (TSA) mechanism for Natural Language
Processing (NLP). By virtue of its conjoint tensor and graph formulation, the proposed framework has
been shown to achieve high expressive power at a drastically lower parameter complexity compared
to traditional attention models. Experimental results have verified the desirable properties of the
proposed TSA, with better or comparable performance achieved across five NLP benchmark tasks at
varying levels of complexity. The performance gain has been demonstrated to be especially fruitful in
low complexity cases.

Broader Impact

The proposed TSA exploits the notion of graph spectral convolution and tensor decomposition to
achieve high expressive power at a low complexity. An immediate impact of our work, as illustrated
through the considered experiments, is the relaxation of computational burden for training large-scale
attention-based models (e.g. transformers), resulting in lighter neural language models suitable for
practical training and deployment. The broader impact, as well as the impact arising from model
failure and data bias, is identical to those of classical attention models in general. Finally, we have
not identified anyone that can be put at disadvantage from this work, nor any negative societal impact.
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