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Abstract

Although first developed for the needs of quantum many-body physics and quantum
computing, tensor networks (TNs) are increasingly being deployed to solve a wide
range of problems in machine learning, optimization, and applied mathematics.
Inspired by the distinct implementation challenges of TN methods in these new
settings, we present ContracTN, a lightweight Python library for general-purpose
TN calculations. Beyond the use of the dense tensor cores supported in standard TN
libraries, ContracTN also supports the use of copy tensors, parameter-free objects
which allow diverse concepts like batch computation, elementwise multiplication,
and summation to be expressed entirely in the language of TN diagrams. The
contraction engine of ContracTN also implements a novel form of stabilization,
which largely mitigates the issue of numerical overflow arising from the use of
low-precision machine learning libraries for TN contraction. Overall, we wish to
popularize a collection of methods which have proven invaluable in implementing
efficient and robust TN models, in the hope that this can help catalyze the wider
adoption of TN methods for problems in machine learning.

1 Introduction

Tensor network (TN) methods were originally developed for the theoretical and computational needs
of quantum many-body physics and quantum computing [14]. In this setting, TNs serve as an efficient
means of describing strongly correlated states of quantum matter, which enable the straightforward
calculation of many physical quantities of interest, chiefly the expected energy of a TN state relative
to a problem-dependent Hamiltonian. Although there exist many delicate implementation issues in
this setting, the design of TN libraries is generally biased towards the use of densely-represented
tensor cores, with a focus on problems that require a relatively small number of contraction operations
to reach an answer. Great value is placed in such settings on numerical accuracy, supporting the use
of double-precision floating point numbers, whose magnitudes can vary from approximately 10−300

to 10300.

More recent applications of TNs to machine learning, optimization, and counting problems make
use of much of the theoretical machinery previously developed for quantum problems, but vary
significantly in their domain-specific demands. For starters, machine learning models trained on
large datasets utilize many repeated computations carried out in a batched fashion, typically within a
machine learning library supporting evaluation on a hardware accelerator. The use of single-precision
floating point formats is standard here, whose limited dynamic range (approximately 10−40 to 1040) is
poorly adapted for the exponential growth in magnitude involved in generic TN contraction processes.
Non-physics applications of TNs also frequently employ copy tensors1, hyperdiagonal tensor cores

1Copy tensors are also referred to as hyperedges [18, 2]
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which enable copying discrete classical data, and whose correct implementation can lead to significant
computational savings relative to a naive treatment as dense tensor cores.

All of these considerations have been instrumental to the design of ContracTN, which takes a distinct
approach to TN layout and evaluation. ContracTN permits the use of different types of tensor cores,
allowing not only standard densely-represented tensors, but also copy tensors and “template” tensors,
where multiple cores arise as duplicates of a single dense parameter tensor. While the latter is
useful for recurrent models such as uniform matrix product states [16, 12], we find the former to
be invaluable for expressing a range of disparate computational operations in purely TN language.
ContracTN utilizes the open-source network analysis library NetworkX [9] to represent the graphical
structure of general TN models, with computation facilitated by converting this graphical structure
into a single string formatted in the manner of NumPy’s multipurpose einsum function [11]. This
string is then fed to the open-source einsum utility opt_einsum [5], which determines an efficient
order of contraction for the TN and performs this contraction in a backend-agnostic manner. We use
a custom version of the opt_einsum contraction function, which uses a separate scalar quantity to
stabilize the norm of intermediate contraction terms. This largely avoids the issue of overflow, at the
cost of utilizing a “split” representation of contraction outputs as a rescaled tensor and a scalar value
indicated the (logarithm of the) amount of rescaling.

We now illustrate these issues of implementing TN libraries for machine learning with code examples,
and the full ContracTN library can be found at https://github.com/jemisjoky/ContracTN.

2 Tensor Network Basics

Tensor networks (TNs) are a general formalism for efficiently encoding high-order tensors, which
utilize a mixture of graph-theoretic and linear-algebraic machinery in their operation. A generic TN
is described by three ingredients:

1. A graph G with node set V and edge set E, whose edges are allowed to connect to either
one or two nodes. The former are referred to as “free” or “open” edges, and the latter as
“bond” or “closed” edges.

2. A map D : E → Z+ associating each edge e ∈ E of G to a non-negative number De, called
the “bond dimension” of that edge.

3. A map T associating each node n ∈ N to a tensor Tn over a field2 K. If n has degree k,
such that it is incident to edges e1, e2, . . . , ek, then Tn must be a kth order tensor satisfying
Tn ∈ Kde1×de2×···×dek

It is clear from the above that any two tensors Tn, Tn′ arising from neighboring nodes n, n′ ∈ N
have a pair of modes of equal dimension, namely those associated with the edge e ∈ E joining n
and n′. The basic computational operation in a TN is tensor contraction, wherein two tensors are
multiplied together along these modes of equal dimension, in a manner which generalizes matrix
multiplication. This computational operation is paired with a change in the underlying G, where
nodes n and n′ merge into a new node n′′ whose tensor Tn′′ is the output of the tensor contraction.

The tensor T implicitly represented by a TN is that associated with the single node arising from the
contraction of all bond edges of a G, with the number of free edges of G giving the order of T . The
specific order in which edges are contracted has no impact on the value of T , but has a significant
impact on the complexity of computing T . Finding the optimal order of contraction is an NP-hard
problem [4], but in practice many algorithms exist that give near-optimal contraction ordering on
large-scale problems [17, 6, 8].

3 Copy Tensors

Given a choice of basis {fi}di=1 for a d-dimensional vector space, one can define a family of copy
tensors ∆n, for n ≥ 1, as

∆n =

d∑
i=1

f⊗ni =

d∑
i=1

fi ⊗ fi ⊗ · · · ⊗ fi. (1)

2In general, K needs only be a semiring, but the case of K = R,C is most common.
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Figure 1: Illustration of the utility of copy tensors for expressing diverse constructions in machine
learning. (a) Batch matrix multiplication has a simple TN description using a third-order copy tensor.
(b) Hidden Markov models, as with more general probabilistic graphical models, utilize copy tensors
to propagate latent states to multiple locations. (c) The CP and Tucker decompositions share the
same TN topology, but differ by the placement of a copy vs. a dense tensor in the center. This leads
the CP decomposition to have a drastically lower computational cost, an advantage which is lost in
libraries which only allow the definition of dense tensor cores. (d) In the use of tensor trains (TT) for
supervised learning [21, 13], each n-dimensional input is associated with a separate vector, giving an
embedding as an order-n rank-1 tensor. Processing a batch of images as a single TN contraction is
achieved by representing each batch of vectors as a matrix, then joining the batch indices of each
matrix by a single copy tensor of order n+ 1.

While copy tensors are less commonly used in quantum settings, due to the restrictions of the quantum
no-cloning principle [23], they are invaluable for expressing many common constructions in machine
learning and applied mathematics within the language of TNs (Figure 1). Although each ∆n is an nth
order tensor, the hyperdiagonal nature of these tensors permits an implementation in software which
is significantly more efficient than would be possible with a dense representation of the same tensor.

As a concrete example, consider a TN with n + 1 cores, consisting of a single copy tensor ∆n+1

connected to n vectors vi of dimension d. It is straightforward to verify from Equation 1 that
the output of this contraction is a vector equal to the element-wise (i.e. Hadamard) product of
the n vectors, which can be computed in time O(nd). By comparison, TN libraries which don’t
support efficient implementations of copy tensors must either use case-by-case methods to handle
basis-dependent operations, or else employ a dense representation with memory cost O(dn).

We define and contract this TN in the script below using ContracTN, for n = 100 and d = 2, and find
that such a contraction process takes only a few milliseconds. By contrast, a dense representation of
the same network is infeasible for any modern computer, owing to the 2101 ≈ 1030 elements naively
contained in the central copy tensor.

import numpy as np
from contractn import TN
tn = TN()

# Add central copy tensor of order 101
copy_node = tn.add_copy_node(101)

# Connect vectors to all but one edge of the copy tensor
for i in range(100):

vec = np.array([1, 0.99])
vec_node = tn.add_dense_node(vec)
# Connect i'th axis of copy_node to 0'th axis of vec_node
tn.connect_nodes(copy_node, vec_node, i, 0)
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print(tn.contract()) # array([1., 0.36603234])
%time tn.contract() # 7.0 ms

The ability to deal with copy tensors in an efficient manner is a significant asset to a TN library, as it
allows concepts such as elementwise multiplication and batch computation to be handled entirely
with TN primitives. Although it might seem like implementing such functionality efficiently would
require a significant amount of additional program logic, we will see shortly how copy tensors can be
seamlessly integrated with dense tensor cores in a fully general fashion.

4 Einsum as a TN Specification Language

One important observation we leverage in the design of ContracTN is the intimate relationship
between the structure of TNs and the functionality of NumPy’s einsum [11], a function specification
utility which has inspired similar implementations across many numerical computing libraries.
einsum utilizes a single string to specify a pattern of contractions between a fixed number of input
tensors, yielding a single output tensor. Each nth order tensor is described by a substring of length n,
whose component symbols describe the pattern of connectivity between different modes of the input
tensors. This string, along with the dense input tensors, are fed to einsum, which contracts together
all tensors and returns a single output. As a representative example, a batched matrix multiplication
operation like that in Figure 1a would be described by the string abc,acd->abd.

While each valid einsum string specifies a computational operation equivalent to contracting a TN,
it is easy to see further that this representation is complete for TNs3. More precisely, the graphical
structure of any TN can be fully described by an einsum string, which is unique up to relabeling of
symbols and reordering of input terms. Crucially, this completeness applies not just to standard TNs
formed from dense tensor cores, but also to those containing copy tensors. In this case, copy tensors
don’t contribute to the input tensors of einsum, but rather serve to identify or sum over indices in a
TN.

Although typical implementations of einsum are limited in the number of allowed symbols and their
ability to optimize over the contraction order of input tensors, ContracTN makes use of the excellent
opt_einsum library [5], an einsum utility well-adapted to the needs of large TNs. Contraction in
ContracTN is handled by simply converting the network structure of a given TN into a single einsum
string, and then relying on opt_einsum to find a contraction order and compute the output. This has
the advantage of disentangling the issues of network layout and computation inherent to TNs, while
also enabling ContracTN to be used with any deep learning library supported by opt_einsum, such
as PyTorch [15], TensorFlow [1], and JAX [7]. We illustrate this conversion of network structure to
einsum-style strings in the following example, where two TNs describing 3rd-order CP and Tucker
decompositions (c.f. Figure 1c) are given.

# Initialize TNs for 3rd-order Tucker and CP decompositions
cp = TN()
tucker = TN()

# Add central "hub" cores
cp_hub = cp.add_copy_node(3)
tucker_hub = tucker.add_dense_node(np.ones((4, 4, 4)))

# Connect each hub to three factor matrices
for i in range(3):

mat = np.eye(4, 10)
cp_mat = cp.add_dense_node(mat)
tucker_mat = tucker.add_dense_node(mat)
cp.connect_nodes(cp_hub, cp_mat, i, 0)
tucker.connect_nodes(tucker_hub, tucker_mat, i, 0)

3Although this completeness doesn’t seem to have been explicitly mentioned in the literature, it should be
obvious to researchers familiar with TNs and the use of einsum. For an illustration of the versatility of einsum,
see the in-depth blog posts [3] and [19].

4



print(cp.einsum_str) # "ac,ad,ae->cde"
print(tucker.einsum_str) # "abc,ae,bf,cg->efg"

Observe that even though both TNs contain 4 component tensor cores, only the dense cores are
represented in the einsum string, with the copy tensor in the CP decomposition serving simply to
link together the left indices of its factor matrices.

5 Stabilizing TN Contractions

One recurring problem in implementing large TN models is the large range of magnitudes occurring
during contraction, an issue which comes from the multiplicative nature of TN contraction. In
particular, given a TN containing n core tensorsAi which contract together to give an output tensor T ,
rescaling each core Ai by a scalar factor of κ leads to a rescaled output tensor κnT . For large values
of n (e.g. n ∼ 100− 1000 ), this leads to a computational process which is extremely sensitive to
small changes in the core tensor values, leading to difficulties in initializing and adjusting core tensors
weights during learning. This problem is made worse by the tendency of deep learning libraries to
favor low-precision floating point formats, so that for a large TN, changing the magnitude of core
tensors by just 20% can change an output that underflows to 0 into one that overflows to infinity.

A standard method for handling this issue is to convert the TN core tensors into some type of canonical
form [22, 20] after any modification in the core tensor values, ensuring that the TN describes a tensor
T with `2-norm ‖T‖2 = 1. While this approach is usually sufficient for computing expectation values
in the setting of quantum many-body physics, it has several notable disadvantages: (a) Convenient
canonical forms don’t exist for arbitrary TNs, and converting core tensors into a canonical form
typically use algorithms specialized to one graph structure; (b) Conversion to canonical form is
computationally expensive, and in many settings has a higher asymptotic cost than the actual TN
contraction itself4; (c) When the TN cores are being used for several distinct tasks, it isn’t always
possible to find a single canonical form which stabilizes the output used for both tasks.

An important example of (c) is probabilistic modeling with Born machines [10], where the elements
Tx1,...,xn

and norm ‖T‖2 of a tensor T are used jointly to encode a probability distribution as
Pr(x1, . . . , xn) = |Tx1,...,xn |2/‖T‖22. Given the huge difference in magnitude between these two
quantities (typically, Pr(x1, . . . , xn) = exp(−O(n))), any fixed rescaling of core tensor values
which stabilizes the value of one quantity will necessarily lead the value of the other to overflow or
underflow. While similar issues arise in deep neural networks, in this case numerical stability can be
achieved through the use of dynamical normalization methods, such as batch and layer normalization,
which aren’t easily expressable in terms of TN primitives.

ContracTN uses a simple form of dynamical rescaling to address this issue, which largely solves the
problem of overflow and underflow in TN contraction. The idea behind this technique is to work with
a “split” representation of a tensor T as T = exp(c) · T̂ , where T̂ is a rescaled version of T whose
elements satisfy |Tx1,...,xk

| ∼ 1, and c is a real scalar quantity giving the logarithm of the rescaling
factor relating T and T̂ . This condition on the rescaled tensor T̂ can always be maintained at each
step of the contraction process, by use of the equality:

T = exp(c) · T̂ = exp(c+ ln(κ)) · T̂ /κ, ∀κ > 0. (2)

ContracTN uses a slight modification of the opt_einsum contract function, which utilizes Equation 2
to maintain numerical stability throughout the computation (Algorithm 1). This modification entails
negligible additional computational costs, yet is able to accurately return contraction results which
would otherwise diverge. Given that this split format might be unfamiliar to users, the contraction
utilities of ContracTN all accept a Boolean argument split_format, with the default behavior
of split_format=False corresponding to standard TN contraction. We illustrate the use of this

4A representative example is supervised learning with tensor trains [21, 13], where an n-core TT with bond
dimension D requires time O(nD2) to generate a prediction for a single input, and time O(nD3) to convert all
TT cores into canonical form.
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Algorithm 1 Stable contraction algorithm for TN with n cores
function STABLE_CONTRACT(cores = [T1, . . . , Tn], c_pairs = [(i1, j1), . . . , (in−1, jn−1)])

c = 0. . c stores the log rescale factor
for (i, j) in c_pairs do . c_pairs specifies contraction order

R = cores[i], S = cores[j] . The two tensors to contract together
T = contract(R,S) . contract equivalent to tensordot
η = ‖T‖1 . The choice of norm isn’t important
κ = η/numel(T ) . numel gives number of elements in T
c = c+ ln(κ), T = T/κ . Rescaling utilizing Equation 2
cores.append(T )

T̂ = cores[0] . By now, cores only has one element
return (T̂ , c) . Gives output in split format

stabilized contraction in the following simple example of multiplying a sequence of 1000 3 × 3
matrices with an input vector5.

# Initialize connected chain of one vector and 1000 3x3 matrices
tn = TN()
prev_node = tn.add_dense_node(np.ones((3,)))
for i in range(1000):

mat_node = tn.add_dense_node(np.ones((3, 3)))
tn.connect_nodes(prev_node, mat_node, -1, 0)
prev_node = mat_node

print(tn.contract())
# [inf inf inf]

print(tn.contract(split_format=True))
# (array([1., 1., 1.]), array(1098.61228867))

The appropriate use of this split format output depends on the problem at hand. For tasks which
only rely on the relative magnitude of different components of the output, the first term can be used
as-is, with the second scalar output discarded. For probabilistic modeling in Born machines using a
negative log likelihood (NLL) loss, the scalar output will represent an additive contribution to this
loss, which is typically significantly larger than the contributions from the first tensor output. No
matter how it is used, the slight additional complexity of this split output is worth the benefit of
removing the most common sources of underflow and overflow, with the additional log-scale register
allowing the representation of tensors whose elements have magnitudes in the range of approximately
10−10

40

to 1010
40

.

6 Conclusion

We have introduced a new TN library which utilizes several important design principles, chiefly: (a)
The use of copy tensors as a first-class ingredient within TN models; (b) The separation of network
layout and computational concerns, with the former simply converting the graphical structure into a
string which can be passed to an appropriately efficient and robust einsum function for contraction;
(c) The use of a split format for tensors as a means of mitigating the numerical overflow and underflow
problems common in applying TNs to difficult real-world problems. We include the current code
for ContracTN, including all scripts given above, in the supplemental material, and hope that its
design can serve as a source of inspiration for current and future libraries for general-purpose TN
computations.

5We leave it as an exercise to the reader to verify that the scalar quantity output as the second component of
the stabilized contraction is indeed the correct value, namely 1000 · ln(3).
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