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Abstract

We investigate a correspondence between two formalisms for discrete probabilistic
modeling: probabilistic graphical models (PGMs) and tensor networks (TNs), a
powerful modeling framework for simulating complex quantum systems. The
graphical calculus of PGMs and TNs exhibits many similarities, with discrete
undirected graphical models (UGMs) known to be a special case of TNs. However,
more general probabilistic TN models such as Born machines (BMs) employ
complex-valued hidden states to produce novel forms of correlation among the
probabilities. While representing a new modeling resource for capturing structure in
discrete probability distributions, this behavior also renders the direct application of
standard PGM tools impossible. We aim to bridge this gap by introducing a hybrid
PGM-TN formalism that integrates quantum-like correlations into PGM models
in a principled manner, using the physically-motivated concept of decoherence.
We first prove that applying decoherence to the entirety of a BM model converts it
into a discrete UGM, and conversely, that any subgraph of a discrete UGM can be
represented as a decohered BM. This method allows a broad family of probabilistic
TN models to be encoded as partially decohered BMs, a fact we leverage to
combine the complementary benefits of both model families. We experimentally
verify the performance of such hybrid models for probabilistic modeling in several
real-world datasets, and identify promising uses of our formalism to quantum
machine learning and within existing applications of graphical models.

Probabilistic graphical models (PGMs) are a framework for encoding conditional independence
information about multivariate distributions as graph-based representations, whose generality and
interpretability have made them an indispensable tool for probabilistic modeling. Undirected graphical
models (UGMs), also known as Markov random fields, form a general class of PGMs with a diverse
range of applications in fields such as computer vision [42], natural language processing [41],
and biology [24]. More recently, the graphical structure of discrete UGMs has been shown to be
closely related to that of tensor networks (TNs) [34], a state-of-the-art modeling framework first
developed for quantum many-body physics [39, 28], whose use in machine learning—for example in
model compression [26, 6], proving separations in expressivity between deep and shallow learning
methods [8, 20], and as standalone learning models [38, 27]—has been a subject of growing interest.

In this work, we explore the correspondence between UGMs and TNs in the setting of probabilistic
modeling. Whereas UGMs are specifically designed to represent probability distributions, general
TNs represent high-dimensional tensors whose values can be positive, negative, or even complex.
While restricting TN parameters to take on non-negative values results in an exact equivalence with
UGMs [34], it also limits their expressivity. More general probabilistic models built from TNs, as
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exemplified by the Born machine (BM) [17] model family, employ complex latent states that permit
them to utilize novel forms of interference phenomena in structuring their learned distributions. While
this provides a new resource for probabilistic modeling, it also limits the applicability of foundational
PGM concepts such as conditional independence.

We make use of the physics-inspired concept of decoherence [45] to develop a hybrid framework for
probabilistic modeling, which allows for the coexistence of tools and concepts from UGMs alongside
quantum-like interference behavior. We use this framework to define the family of decohered Born
machines (DBMs), which we prove is sufficiently expressive to reproduce any probability distribution
expressible by discrete UGMs or BMs, along with more general families of TN-based models. We
further show that DBMs satisfy a conditional independence property relative to its decohered regions,
with the operation of decoherence permitting the values of latent random variables to be conditioned
on in an identical manner as UGMs. Finally, we verify the empirical benefits of such models using
several model architectures and real-world datasets.

Related Work Our work builds on the duality results of [34], which establish a graphical corre-
spondence between discrete UGMs and TNs, by further accounting for the distinct probabilistic
behavior of both model classes. Much work across physics, machine learning, stochastic modeling,
and automata theory has introduced and explored novel properties of quantum-inspired probabilistic
models [44, 2, 11, 14, 32, 31, 17, 37, 36, 3, 5, 23, 13], almost all of which explicitly or implic-
itly employ tensor networks. The relative expressivity of these models was explored in [16, 1],
where quantum-inspired models were proven to be inequivalent to graphical models. Fully-quantum
generalizations of various graphical models were investigated in [19].

1 Preliminaries

We work with real and complex finite-dimensional vector spaces Fd, where F denotes one of R
or C when the distinction is not needed. We take an nth order tensor, or n-tensor, over F to be a
scalar-valued map T : [d1]× · · · × [dn]→ F from an n-fold Cartesian products of index sets, where
[d] := {1, . . . , d} and where the vector space of all n-tensors is denoted by Fd1×···×dn . Matrices,
vectors, and scalars over F respectively correspond to 2-tensors, 1-tensors, and 0-tensors, whereas
higher-order tensors refers to any n-tensor for n > 2. The elements of T are individual values
of T on input tuples, and written as Tx1,...,xn := T (x1, . . . , xn) ∈ F, while the ith mode of T
refers to the ith argument of T . The tensor product of any n-tensor T ∈ Fd1×···×dn and m-tensor
T ′ ∈ Fd′1×···×d′m is the (n+m)-tensor T ⊗ T ′ ∈ Fd1×···×dn×d′1×···×d′m whose elements are given
by (T ⊗ T ′)x1,...,xn,x′1,...,x

′
m

= Tx1,...,xnT
′
x′1,...,x

′
m

. We use R+ to indicate the non-negative real

numbers, and take the 2-norm of a tensor T to be the scalar ‖T‖2 =
√∑

x1,...,xn
|Tx1,...,xn |2 ∈ R+.

Finally, we use u† to indicate the conjugate transpose of a complex vector or matrix u.

We focus exclusively on undirected graphs G, whose vertex and edge sets are denoted by V and
E. In anticipating the needs of tensor networks, we allow graphs with edges incident to only one
node, which we refer to as visible edges. We use EV ⊆ E to indicate the set of all visible edges,
and EH := E − EV to indicate the set of all hidden edges, which are edges adjacent to two nodes.
Graphs without visible edges will be called proper graphs. For any node v ∈ V , we denote the set
of edges incident to v by Inc(v). A clique of G is a maximal subset C ⊆ V such that every pair of
nodes v, v′ ∈ C are connected by an edge, and we use Clq(G) to denote the set of all cliques of G.
We define a cut set of G to be any set of edges EC ⊆ E such that the removal of all edges in EC
from G partitions the graph into two disjoint non-empty sub-graphs.

We refer to random variables (RVs) using uppercase letters such as X,Y, Z, and their possible
outcomes with lowercase equivalents such as x, y, z. RVs and their outcomes are often indexed with
values from an index set, for example i ∈ I = {1, . . . , n}, in which case the notationXI indicates the
joint RV (X1, . . . , Xn). A similar notation is used for multivariate functions f(xI) := f(x1, . . . , xn),
as well as for tensor elements TxI := Tx1,...,xn , and a related notation F×i∈Idi := Fd1×···×dn is
used for spaces of tensors. Given three disjoint sets of random variables XA, XB , XC , we let
XA ⊥ XB |XC indicate the conditional independence of XA and XB given XC , and XA ⊥ XB

indicate the (unconditional) independence of XA and XB .
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1.1 Undirected Graphical Models

Probabilistic graphical models (PGMs) encode multivariate probability distributions using a proper
graph G = (V,E) whose nodes v correspond to RVs Xv. We focus on undirected graphical
models (UGMs), whose probability distributions are determined by a collection of clique potentials
φC : XC → R+, non-negative valued functions from the RVs associated with nodes in C, where
C ranges over all cliques of G. Given a UGM on an n node graph with clique potentials φC , the
probability distribution encoded by the UGM is

P (x1, . . . , xn) =
1

Z
∏

C∈Clq(G)

φC(xC), (1)

where Z =
∑

x1,...,xn

∏
C∈Clq(G)

φC(xC).

UGMs satisfy a general conditional independence property involving disjoint subsets of nodes
A,B,C ⊆ V for which the removal of C leaves the nodes of A and B in separate disconnected
subgraphs of G. In this case, the RVs associated with these nodes satisfy XA ⊥ XB |XC . Such
conditional independence guarantees provide a rich and intuitive framework for succinctly encoding
the structure of real-world correlations in graphical models, and also help to make the behavior of
such models more interpretable.

While the definition above is the standard presentation of UGMs, to permit an easier comparison with
tensor networks we will more often view them in a dual graphical formulation. In this dual picture,
nodes represent clique potentials φC and edges represent RVs Xi.

2 Tensor Networks

Tensor networks (TNs) provide a general means of efficiently encoding higher-order tensors using
smaller tensor cores, in the same manner as UGMs efficiently encode multivariate probability
distributions in terms of smaller clique potentials. Tensor contraction is the primary computational
operation in TNs, and consists of the multiplication of an n-tensor T ∈ Fd1×···×dn and an m-
tensor T ′ ∈ Fd′1×···×d′m along modes k, k′ of equal dimension dk = d′k′ , to yield a single output
(n+m− 2)-tensor T ′′ with elements of

T ′′x1···xk−1xk+1···xnx′1···x′k′−1
x′
k′+1
···x′m =

dk∑
xk=1

Tx1···xk−1xkxk+1···xnT
′
x′1···x′k′−1

xkx′k′+1
···x′m . (2)

Although appearing complex, Equation (2) can readily be seen to generalize matrix-matrix and
matrix-vector multiplication, vector inner products, and scalar multiplication. Crucially, tensor
contraction is associative, in the sense that iterated contractions between multiple tensors yield the
same output regardless of the order of contraction. In practice, finding a good contraction ordering
can lead to massive savings in memory and compute when carrying out tensor contraction.

Tensor network diagrams [30] provide an intuitive formalism for reasoning about computations involv-
ing tensor contraction using undirected graphs. In a TN diagram, each n-tensor T ∈ Fd1×d2×···×dn
is represented as a node of degree n, and each mode of T is represented as an edge incident to
T . Tensor contraction between two tensors along a pair of modes is depicted by connecting the
corresponding edges of the nodes, with the actual operation of tensor contraction depicted by merging
the nodes representing both input tensors into a single node which shares the visible edges of both
input nodes. In this manner, a TN diagram with n visible edges and any number of hidden edges
specifies a sequence of tensor contractions whose output will always be an n-tensor. For example, the
TN diagram = expresses a tensor contraction used in the SVD to express a matrix as
the product of three smaller matrices. As a special case, the tensor product of two tensors is depicted
by drawing them adjacent to each other, with no connected edges.

Tensor networks use a fixed TN diagram to efficiently parameterize a family of higher-order tensors
in terms of a family of smaller dense tensor cores, as stated in the following:
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Figure 1: Tensor network and copy tensor notations. (a) Basic notations for TNs, where nodes
represent tensors and edges represent tensor modes. Vectors ex denote elements of an orthonormal
basis used to express tensors as arrays. (b–c) Vector inner products u†v and matrix multiplication
MN are simple examples of tensor contraction. (d) Tensor contraction is associative, with the
contraction of tensors R, S, and T by first contracting R and S (shown) giving the same result as first
contracting S and T . (e) Copy tensors ∆n =

∑
x(ex)⊗n are denoted by a black dot with n edges.

(f) Copy tensors act on basis vectors ex by copying them to all visible edges and (g) they permit
any connected network of copy tensors to be arbitrarily rearranged, provided the total number of
visible edges remain unchanged. Copy tensors also allow the graphical expression of basis-dependent
operations, including (h) marginalizing over a RV in a probability distribution, (i) the element-wise
product of tensors, and (j) the creation of diagonal matrices from a vector of diagonal values.

Definition 1. A tensor network consists of a graph G = (V,E), along with a positive integer
valued map d(−) : E → Z+ assigning each edge η to a vector space of dimension dη, and a map
A(−) : v 7→ F×η∈Inc(v)dη assigning each node v to a tensor core A(v) whose shape is a tuple of all
dimensions of edges incident to v. The tensor encoded by a tensor network is the contraction of all
tensor cores A(v) along the hidden edges of G.

Dimensions di assigned to hidden edges are referred to as bond dimensions, and for a fixed graph G
they represent the primary hyperparameters setting the tradeoff between a TN’s compute/memory
efficiency and its expressivity. A simple example of a TN is a low-rank matrix factorization, whose
graph G is the line graph on two nodes , and whose single bond dimension is the rank of the
parameterized matrix.

Copy Tensors Given an orthonormal basis B = {e1, . . . , ed} for a vector space Fd, for each n ≥ 1

we define the nth order copy tensor associated with B to be ∆n :=
∑d
x=1(ex)⊗n. When ∆n is

contracted with any of the d basis vectors ex, the result is a tensor product (ex)⊗n−1 of n − 1
independent copies of ex (Figure 1f). This convenient property only holds for vectors chosen from
the basis defining the copy tensor, leading to a one-to-one correspondence between copy tensor
families and orthonormal bases [7]. The copy tensors ∆1 and ∆2 respectively correspond to the
d-dimensional all-ones vector and identity matrix, with the former allowing the expression of sums
over tensor elements.

An nth order copy tensor is depicted graphically as a single black dot with n edges (Figure 1d). Copy
tensors satisfy a useful closure property under tensor contraction, with any connected network of copy
tensors being identical to a single copy tensor with the same number of visible edges [12, Theorem
6.45]. This property allows connected networks of copy tensors to be rearranged in any manner, so
long as the number of visible edges remains unchanged (Figure 1f). General tensor network diagrams
can only express basis-independent operations, while the use of copy tensors allows for the graphical
description of a larger family of operations which depend on a choice of basis (Figure 1g–i).
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Figure 2: Tensor network description of UGMs. (a) Example of the duality between UGM-style
graphical notation, where nodes are associated with RVs, and TN-style graphical notation, where
nodes are associated with clique potentials. Factor graphs act as an intermediate representation, with
duality simply interchanging variable and factor nodes. (b) Marginalization of a probabilistic model is
represented in TN notation by contracting the corresponding visible edges by first-order copy tensors.
(c) Conditioning is represented by contracting the corresponding visible edges by outcome-dependent
basis vectors, with conditional independence of the resulting distribution achieved through properties
of copy tensors. (d) Any TN with non-negative cores can be converted to a UGM by promoting its
hidden edges into visible edges by the use of third-order copy tensors. Marginalizing these new latent
RVs recovers the original distribution over the visible edges.

2.1 Undirected Graphical Models as Non-Negative Tensor Networks

Discrete multivariate probability distributions are an important example of higher-order tensors,
with the individual probabilities P (x1, x2, . . . , xn) of a distribution over n discrete RVs form-
ing the elements of an n-tensor. More generally any non-negative tensor T , whose elements
all satisfy Tx1x2···xn ≥ 0, can be converted into a probability distribution PT by normalizing
as PT (x1, x2, . . . , xn) = 1

Z Tx1x2···xn , where Z =
∑
x1,x2,...,xn

Tx1x2···xn .

The connection between multivariate probability distributions and the structure of higher-order
tensors extends further, with the independence relation XA ⊥ XB between two disjoint sets of
RVs being equivalent to the factorization of their joint probability distribution as the tensor product
P (xA, xB) = P (xA)⊗P (xB). Methods used to efficiently represent and learn higher-order tensors,
such as tensor networks, can be applied to probabilistic modeling, provided that there is some
means of parameterizing only non-negative tensors. We discuss two approaches for achieving such a
parameterization, one equivalent to undirected graphical models and the other to Born machines.

It was shown in [34, Theorem 2.1] that the data defining a UGM is equivalent to that defining a TN,
but with dual graphical notations that interchange the roles of nodes and edges. Converting from a
UGM to an equivalent TN involves expressing each clique potential φC on a clique C of size k as a
kth-order tensor core A(vC), depicted as a degree-k node vC of the TN diagram. Meanwhile, each
UGM node representing a discrete RV is replaced by a copy tensor1 of degree equal to the number
of clique potentials the RV occurs in, plus one additional visible edge permitting the values of the
RV to appear in the probability distribution described by the TN (Figure 2a). Since every tensor
core consists of non-negative elements, the resultant TN is guaranteed to describe a non-negative
higher-order tensor. We refer to this family of TN models as non-negative tensor networks.

In the dual graphical notation of TNs, marginalization and conditioning in UGMs comes from
contracting a visible edge of the associated TN with a first-order copy tensor ∆1 =

∑
x ex (marginal-

ization) or an outcome-dependent basis vector ex (conditioning). Computing the distribution over the
remaining RVs is then a straightforward application of tensor contraction [34], where any node of the
TN with no remaining visible edges is contracted away (Figure 2b). Since variables are associated
to copy tensors, the conditional independence property of UGMs can be proven using the copying

1Copy tensors were used implicitly in [34], in the form of hyperedges within a defining hypergraph.
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Figure 3: Overview of Born machines, a family of TN-based probabilistic models. (a) Born machines
represent a general higher-order tensor ψ as a TN, whose elements are converted to probabilities
via the Born rule. This can be used to express the probability distribution itself as a composite TN
diagram. (b–c) Unlike non-negative TNs, any attempt to read out the hidden edges of BMs as latent
RVs alters the overall distribution, a manifestation of the “observer effect” of quantum mechanics.
Converting a hidden edge to a RV and then marginalizing results in a different distribution.

property of copy tensors (Figure 2c). In TN graphical notation, conditional independence arises when
a conditioning set of RVs XC form a cut set of the underlying TN graph, in which case the RVs XA

and XB associated with the two disconnected subsets of the graph will satisfy XA ⊥ XB |XC .

The reverse direction of converting non-negative TNs into UGMs is also straightforward, though
care is needed with the treatment of hidden edges. Here we replace all hidden edges by third-order
copy tensors, yielding new visible edges encoding latent RVs associated with the previously hidden
edges. This process is reversible, in the sense that marginalizing over a latent RV associated with a
hidden edge yields the original distribution, allowing hidden edges of a non-negative TN to be freely
converted into visible edges (Figure 2d). We will see shortly that this property is not shared by more
general probabilistic TN models.

3 Born Machines

While UGMs represent one means of parameterizing non-negative tensors for probabilistic modeling,
an alternate approach is suggested by quantum physics. Quantum systems are described by complex-
valued wavefunctions, higher-order tensors which yield probabilities under the Born rule of quantum
mechanics. The efficacy of TNs in learning quantum wavefunctions inspired the Born machine (BM)
model [17].
Definition 2. A Born machine consists of a tensor network over a graph G, whose associated
tensor ψ ∈ Fd1×···×dn encodes a probability distribution via the Born rule P (x1, . . . , xn) =

1
‖ψ‖22
|ψx1···xn |2, where ‖ψ‖2 is the 2-norm of ψ and n is the number of visible edges in G.

The Born rule permits the (unnormalized) probability distribution associated with a BM to be
expressed as a single composite TN, consisting of two copies of the TN parameterizing ψ, one with
all core tensor values complex-conjugated, and where all pairs of visible edges have been merged via
third-order copy tensors (Figure 3a). Expressing the BM distribution as a single composite TN allows
efficient marginal and conditional inference procedures to be applied in a manner analogous to UGMs,
namely by contracting the visible edges of the composite TN with vectors ∆1 (marginalization) or
exi (conditioning), and then contracting regions of the TN with no remaining visible edges. The
“doubled up” nature of the composite TN means that intermediate states occurring during inference are
described by density matrices, positive semidefinite matrices employed in quantum mechanics whose
non-negative diagonal entries correspond to (unnormalized) probabilities, and whose off-diagonal
elements are called “coherences.”

The existence of non-zero coherences gives BMs the ability to utilize quantum-like interference
phenomena in modeling probability distributions, but also makes it difficult to interpret the operation
of a BM by assigning latent RVs to its edges, as was possible with non-negative TNs. While we can
force a new RV into existence by extracting the diagonal elements of intermediate density matrices
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Figure 4: Decoherence and the decohered Born machine (DBM) model. (a) The decoherence operator
D, which removes coherences from hidden states in BMs, leaving a diagonal matrix which encodes
a latent RV. Decoherence operators permits the readout of latent RVs in a reversible manner, with
marginalization of the latent RV yielding the original distribution (third diagram). (b) Examples of
decohered Born machines (DBMs) based on a three-core TN with hidden edges a and b. Choosing
the decohered edge set ED = {a} results in a decoherence operator being placed in the location
corresponding to edge a in the composite TN, which allows the decohered edge to be expressed as a
new latent RV. (c) Sketch of the proof of Theorem 1, that every fully-decohered BM is equivalent to a
UGM. Copy tensor rewriting rules permit the factorization of fully-decohered BMs into non-negative
valued tensors which form clique potentials of an equivalent UGM. (d) Example of the conditional
independence property for the DBM above with ED = {a}. Conditioning on Z = z for the latent
RV at decohered edge a leads to the conditioning value being copied to all attached cores, which in
turn leads to a factorization of the conditional distribution into two independent pieces.

using copy tensors (Figure 3b), this causes the elimination of all coherences in density matrices
passing through the edge, with the result that the distribution after marginalizing the new latent
variable differs from the original BM distribution (Figure 3c). This fact, which can be seen as a
consequence of the measurement-induced “observer effect” in quantum mechanics, represents a
tradeoff between expressivity and interpretability in general probabilistic TN models that isn’t present
in PGMs.

4 A Hybrid Framework

While the graphical structure of Born machines can be used to define area laws, which characterize
the achievable mutual information between subsets of RVs [10, 21], this graphical structure does
not directly enable the conditional independence results available with PGMs. The main source
of this discrepancy is the difficulty of assigning latent RVs to the hidden edges of a BM, with
observations of the visible edges alone unable to guarantee a division of the post-conditioning BM
distribution into two independent pieces. While we have seen how latent RVs associated with the
hidden edges of a BM can be forced into existence, the fact that this process fundamentally alters
the original distribution makes it difficult to easily reason about. However, we show how accounting
for this measurement-induced disturbance in a principled manner makes it possible to combine the
representational advantages of BMs with the conditional independence guarantees present in PGMs.

We make use of the notion of decoherence, a physically-inspired process whereby all off-diagonal
coherences of a density matrix are set to zero while leaving all diagonal elements unchanged.
Decoherence plays a valuable role in reconciling the counterintuitive nature of measurement in
quantum physics with the intuitive behavior of observation in everyday life [45], and we similarly use
decoherence to understand the interface between classical and quantum-inspired graphical models. In
our setting, we define the decoherence operator D to be simply a fourth-order copy tensor which
maps density matrices to other density matrices (Figure 4a). As seen in Figure 3c, D is the natural
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result of converting a hidden edge of a BM into a latent RV and then marginalizing. We can use
this idea to decohere certain edges of a BM in advance, leading to a division of the hidden edges
into decohered and unobserved edges. This naturally leads to the idea of a decohered Born machine,
which we define as follows:
Definition 3. A decohered Born machine (DBM) consists of a Born machine over a graph G along
with an arbitrary subset of “decohered” hidden edges ED ⊆ EH . The probability distribution
represented by a DBM is given by the composite TN associated to the original BM, but with each
pair of hidden edges in ED replaced by a decoherence tensor D. A DBM for which ED = EH is
referred to as a fully-decohered Born machine.

Having Definition 3 in hand, we would like to understand the expressivity of general DBMs. It is
clear that standard BMs are a special case of DBMs, where ED is the empty set. More generally
though, we show in Theorem 1 that taking ED = EH leads to a model equivalent to a UGM with the
same bond dimensions. This fact, together with Corollary 1, allows us to prove that fully-decohered
BMs are entirely equivalent in expressivity to discrete UGMs.
Theorem 1. The probability distribution expressed by a fully-decohered Born machine with tensor
cores A(v) is identical to that of a discrete undirected graphical model with clique potentials of the
same shape, whose values are given by φC(xC) = |A(v)

xC |2, where xC contains the RVs from all edges
adjacent to v ∈ V .

The proof of Theorem 1 is given in Appendix B.1, with the basic idea illustrated in Figure 4c. Each
decoherence operator D can be written as the product of two third-order copy tensors, each of which
can be assigned to one pair of TN cores adjacent to the decohered edge. In the case that all edges of a
DBM are decohered, these copy tensors allow each pair of cores A(v) and A(v)∗ to be replaced by
their element-wise product, giving an effective clique potential with non-negative values. The UGM
formed by these clique potentials has the same graphical structure as the TN describing the original
BM (up to graphical duality). Conversely, the correspondence given in Theorem 1 suggests a basic
method for representing any discrete UGM as a fully-decohered BM.
Corollary 1. The probability distribution of any discrete undirected graphical model with clique
potentials φC(xC) is identical to that of any fully-decohered Born machine with tensor cores of the
same shape, and whose elements are given by A(v)

xC = exp (2πi θC(xC))
√
φC(xC), where θC can

be any real-valued function, and with v ∈ V indicating the TN node dual to the clique C.

Although standard BMs and UGMs operate very differently—and in the case of line graphs have
been proven to have inequivalent expressive power [16]—we see that DBMs offer a unified means of
representing both families of models with an identical parameterization. Although our above results
only characterize the extreme cases of decohering all or none of the hidden edges, we further prove
in Appendix B.3 that DBMs are equivalent in expressivity to the class of locally purified states [43],
a model family which generalizes both BMs and UGMs.

More importantly though, the use of decoherence in DBMs allows the conditional independence
guarantees of PGMs to be extended to the setting of quantum-inspired TN models. The ability to
replace any decoherence operator by a fifth-order copy tensor with a new visible edge lets us assign
RVs to all decohered edges, such that marginalizing over these new RVs yields the original DBM
distribution. These new RVs behave identically to those of a UGM, letting us make conditional
independence guarantees with respect to the decohered edges of a DBM.
Theorem 2. Consider a DBM with underlying graph G and decohered edges ED, along with a
subset EC ⊆ ED which forms a cut set for G. Denoting the RVs associated to EC by ZC , and the
RVs associated to the disconnected subsets of G arising from the cut set EC by XA and XB , then the
DBM distribution satisfies the conditional independence property XA ⊥ XB |ZC .

While the complete proof of Theorem 2 is given in Appendix C, the idea is simple (Figure 4d). The
insertion of decoherence operators, which are examples of copy tensors, into the composite TN for
the DBM allows any basis vector ez used for conditioning to be copied to all edges incident to the
copy tensor. This in turn removes any direct correlations between the nodes on either side of the
decohered edge, so that conditioning on a collection of RVs associated with a cut set of decohered
edges results in a factorization of the post-conditioning composite TN into a tensor product of two
independent pieces, and thereby the conditional independence of the associated regions of the DBM
distribution.
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Figure 5: The different underlying TNs used for the experiments. (a) The recurrent cell of a factorial
hidden Markov model (FHMM) with two layers. (b) A tree tensor network (TTN) with visible edges
at the root and leaf nodes. The TTN used in the congressional voting records experiment contains
16 leaf nodes and 4 layers of hidden edges. (c) A tensor train (TT) model. The TT used in the solar
flares experiment contains 13 nodes and 12 hidden edges.

5 Experiments

Table 1: Negative log likelihood (NLL) on held-out test set for the following three experiments: (a)
Two-layer factorial hidden Markov model (FHMM) trained on bars and stripes dataset. (b) Tree tensor
network model (TTN) trained on congressional voting records dataset. (c) Tensor train model (TT)
trained on solar flares dataset. In each case, decohering a strict subset of the model better captures the
structure of the data than a pure BM or UGM.

Bars and Stripes w/ FHMM Congressional Voting w/ TTN Solar Flares w/ TT
None (BM) 36.0 None (BM) 11.6 None (BM) 6.65
One layer 35.2 One layer 11.3 1/4 of edges 6.60

All (UGM) 36.7 Two layers 12.8 1/3 of edges 6.58
Three layers 13.1 1/2 of edges 6.58
All (UGM) 12.6 All (UGM) 6.63

Having identified several useful theoretical properties of DBMs, we now assess the empirical per-
formance of DBMs as an increasing number of hidden edges of the model are decohered. We use
UGM and BM models as natural baselines here, which arise at the limits of decohering all or no
hidden edges. We perform experiments on one synthetic and two real-world datasets, which are
modeled by DBMs defined over varying graph structures. In each case, we find different levels of
decoherence to yield largely similar performance, with models possessing an intermediate amount of
decoherence tending to do better than both UGMs and BMs. Our results thus lend support to the idea
that decoherence can not only increase the interpretability of quantum-inspired generative models,
but also help to better capture the structure present in real-world data.

The first experiment uses an undirected version of a factorial hidden Markov model (FHMM) [15],
where the probabilities of several independent HMMs are combined together using product pooling
(Figure 5a). We work with a flattened version of the synthetic bars and stripes dataset [22], consisting
of 500 8× 8 binary images of multiple horizontal or vertical bars, and compare the test loss of the
trained model when the hidden states of zero, one, or both HMMs are decohered throughout.

The second experiment uses a tree tensor network (TTN), whose graph is a balanced binary tree
and whose visible edges are associated with the root and leaf nodes (Figure 5b). We work with the
congressional voting records dataset [35], containing the party affiliation of 435 US representatives
along with their votes on 16 different issues. This corresponds to a TTN with 16 leaf nodes and four
layers of hidden edges, and we compare the test loss when the topmost k sets of hidden edges are
decohered, for 0 ≤ k ≤ 4.

The third experiment uses a tensor train (TT) [40, 29], a TN associated to a line graph with a visible
edge for each node (Figure 5c). We work with the solar flares dataset [25], containing 1066 records
of solar flare events with 13 recorded attributes for each. The associated TT has 12 hidden edges, and
we compare the test loss when all, none, or every two, three, or four edges are decohered.

All models in our experiments make use of complex-valued weights, but given that decoherence causes
complex phases in the model weights to have no effect on the encoded probability distribution, we
choose to increase model bond dimensions as decoherence is increased in each experiment in order to
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give an approximately equal number of real-valued parameters to each case. We implement all models
in JAX [4] and train using adaptive gradient descent with Adam [18]. We divide each dataset into train,
validation, and test splits, with the negative log likelihood (NLL) of the model on the test set at the
epoch with the lowest validation loss reported in Table 1. Further experimental information, along with
our complete experimental code, can be found at https://github.com/jemisjoky/pgm_tn_bm.

6 Conclusion

We use the physically-motivated notion of decoherence to define decohered Born machines (DBMs),
a new family of probabilistic models that serve as a bridge between PGMs and TNs. As shown in
Theorem 1 and Corollary 1, fully decohering a BM gives rise to a UGM, and conversely any subgraph
of a UGM can be viewed as the decohered version of some BM. Crucial to this back-and-forth
passage is the use of copy tensors, which further allows conditional independence guarantees in
the context of TN modeling and provides an additional correspondence between the two modeling
frameworks. An immediate limitation of our results surrounding DBMs is the focus on UGMs
only. An extension to directed graphical models is left for future work, as is a deeper investigation
into what kinds of problems could most benefit from utilizing quantum interference effects in the
manner proposed. It is possible that DBMs would improve the performance of existing graphical
model inference and learning algorithms by replacing sub-regions of the model with quantum-style
ingredients, although a more systematic exploration of this question is needed. The integration of
“classical” and “quantum” ingredients represented by a DBM further makes it a natural candidate for
quantum machine learning, as decoherence represents a natural form of noise present in quantum
hardware in the noisy intermediate-scale quantum (NISQ) era [33].
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Figure 6: A tensor network (TN) associated with a graph G = (V,E) with V = {1, 2, 3, 4}
and E = {η1,2, η2,3, η1,3, η3,4, η1, η2, η3, η4}. The edge set E is partitioned into visible edges
EV = {η1, η2, η3, η4} and hidden edges EH = {η1,2, η2,3, η1,3, η3,4}, with the four visible edges
giving a fourth-order tensor ψ. A Born machine (BM) uses two copies of this underlying TN,
one with all cores complex-conjugated, to define a fourth-order composite TN whose associated
tensor PX1X2X3X4 is an unnormalized probability distribution associated with four random variables.
A decohered Born machine (DBM) uses a similar composite TN, but allows for a decoherence
operator to be inserted in some edges, as specified by a set ED ⊆ EH . In the composite TN shown,
ED = {η2,3, η3,4}.

A Decohered Born Machines Compute Unnormalized Probability
Distributions

Here we show that every decohered Born machine (DBM) defines a valid (unnormalized) probability
distribution, that is, that the tensor elements of a DBM are non-negative. This can be seen from the
fact that the probability distribution represented by a DBM is obtainable as a marginalization of the
distribution represented by a larger Born machine (BM) model. By definition, a DBM is a BM ψ
with the property that a subset ED of the set EH of the hidden edges of ψ are decohered. Recall that
decoherence here involves the contraction of k third-order copy tensors ∆3, where k is the size of the
set ED, and observe that such contraction can be achieved by marginalizing over new latent variables
Z1, . . . , Zk introduced in the corresponding hidden edges. The tensor elements of the DBM will then
take the form

∑
z1,...,zk

|ψ′x1,...,xn,...,z1,...,zk
|2, where ψ′ is associated to a larger BM containing all

copy tensors ∆3 associated with decohered edges. These tensor elements are clearly non-negative,
proving that DBMs always describe non-negative tensors.

B Expressivity of Decohered Born Machines

We prove several results which give a general characterization of the expressivity of decohered Born
machines (DBMs), showing them to be capable of reproducing a range of classical and quantum-
inspired probabilistic models. In Section B.1, we prove that fully-decohered Born machines are
equivalent in expressivity to undirected graphical models (UGMs), with the equivalence in question
preserving the number of parameters of the two model classes. This result, which parallels the
tautological equivalence of non-decohered DBMs and standard BMs, is followed in Section B.3 by a
result showing the equivalence of DBMs and locally purified states (LPS), an expressive model class
introduced in [16].

We first review the definition of a DBM and some terminology for its graphical structure. Tensor
networks (TNs) are defined in terms of a graph G = (V,E) whose edges are allowed to be incident
to either two or one nodes in V , and we will refer to the respective disjoint sets of edges as hidden
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Figure 7: Example of Theorem 1 showing the conversion of a fully-decohered BM into an equivalent
UGM. By rewriting each decoherence operator as a product of third-order copy tensors, we can
rewrite every pair of BM core tensors A(v) and A(v)∗ as a single core tensor B(v), whose values are
guaranteed to be non-negative. This can consequently be used as a clique potential for a UGM.

edges EH ⊆ E and visible edges EV ⊆ E. Visible edges are associated with the modes of the tensor
described by the TN, with the number of visible edges in G equal to the order of the tensor. Nodes
which aren’t incident to any visible edges are referred to as hidden nodes of the TN. Every node
v ∈ V is associated with a tensor core A(v) of the TN, with the order of A(v) being equal to the
degree of v within G.

Recall that every BM is completely determined by a TN description of a higher-order tensor ψ,
whose values are then converted into probabilities via the Born rule. We call the TN describing ψ the
underlying TN, and the Born rule implies that the probability distribution can be described as a single
composite TN formed from two copies of the underlying TN, with all pairs of visible edges joined by
copy tensors ∆3. We sometimes use the phrase composite edge to refer to any pair of “doubled up”
edges in the composite TN, in which case the composite TN can be seen as occupying the same graph
as the underlying TN, but where each hidden edge corresponds to a composite edge. The probability
distribution defined by a DBM is given by replacing certain composite edges in the composite TN by
decoherence operators D, according to whether those edges belong to a set of decohered edges ED
(Figure 6).

B.1 Proof of Theorem 1

We first restate Theorem 1, before providing a complete proof.

Theorem 1. The probability distribution expressed by a fully-decohered Born machine with tensor
cores A(v) is identical to that of a discrete undirected graphical model with clique potentials of the
same shape, whose values are given by φC(xC) = |A(v)

xC |2, where xC contains the RVs from all
edges adjacent to v ∈ V .

Proof. We show that the composite TN defining the probability distribution of a fully-decohered BM
can be rewritten as a TN on the same graph G as the underlying TN, with identical bond dimensions
but where all cores take non-negative values. By virtue of the equivalence of non-negative TNs and
UGMs [34, Theorem 2.1], this suffices to prove Theorem 1.

Fully-decohered BMs are defined as DBMs for which ED = EH , so that every composite edge
within the composite TN has been replaced by a decoherence operator D. Since D = ∆4, we can use
the equality of different connected networks of copy tensors (Figure 1g) to express D as a contraction
of two third-order copy tensors ∆3 along a single edge. Decohered edges are hidden edges and
are therefore incident to two distinct (pairs of) nodes in the composite TN. This allows us to move
each copy of ∆3 onto a separate pair of nodes incident to the composite edge (Figure 7). We group
together each pair of nodes A(v) and A(v)∗, along with all copy tensors ∆3 incident to it, and contract
each of these groups into a single tensor, which we call B(v).

It is clear that each tensorB(v) consists of a pair of coresA(v) andA(v)∗ with all pairs of edges joined
together by separate copies of ∆3. Since this arrangement of copy tensors corresponds to the element-

wise product of A(v) and A(v)∗, this implies that the elements of B(v) satisfy B(v)
xInc(v)

=
∣∣∣A(v)

xInc(v)

∣∣∣2,
with xInc(v) denoting the collection of indices associated with the edges incident to v (these correspond
to xC for some clique C in the dual graph). Since each core B(v) has the same shape as A(v), has
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Figure 8: A locally purified state (LPS) model is similar to a BM, but with an additional purification
edge added to each node of the underlying TN. Although a small graphical change, this gives LPS
greater expressive capabilities than BMs [16]. We show here that DBMs are equivalent to LPS in
expressivity.

non-negative values, and is arranged in a TN with the same graph as the underlying TN, this proves
Theorem 1.

B.2 Proof of Corollary 1

Corollary 1. The probability distribution of any discrete undirected graphical model with clique
potentials φC(xC) is identical to that of any fully-decohered Born machine with tensor cores of the
same shape, and whose elements are given by A(v)

xC = exp (2πi θC(xC))
√
φC(xC), where θC can

be any real-valued function, and with v ∈ V indicating the TN node dual to the clique C.

Proof. The statement of Corollary 1 gives an explicit formula for constructing BM cores A(v) from
clique potentials φC , using an arbitrary real-valued tensor θC . It can be immediately verified that the
conversion from BM cores A(v) to effective clique potentials under full decoherence (Theorem 1)
recovers the same clique potentials we had started with, proving Corollary 1. Note that the values of
the complex phases exp (2πi θC(xC)) have no impact on the decohered cores.

B.3 Decohered Born Machines are Equivalent to Locally Purified States

Although the definition of locally purified states (LPS) in [16] assumes a one-dimensional line graph
for the TN, we give here a natural generalization to LPS defined on more general graphs.

Definition 4. A locally purified state (LPS) consists of a tensor network over a graph G containing
2n visible edges, where all cores contain exactly two visible edges, one of which is designated as
a purification edge, and the set of purification edges is denoted by EP ⊆ EV . The n-variable
probability distribution defined by an LPS is given by constructing the composite TN for a BM from
these cores, with order 2n, then marginalizing over all n purification edges.

An illustration of this model family is given in Figure 8. By choosing all purification edges to have
dimension 1, LPS reproduce standard BMs, whereas [16, Lemma 3] gives a construction allowing
LPS to reproduce probability distributions defined by general UGM. Owing to this expressiveness,
and to corresponding results for uniform variants of LPS [1], we can think of LPS as representing
the most general family of quantum-inspired probabilistic models. We now prove that DBMs are
equivalent in expressivity to LPS, by first showing that LPS can be expressed as DBMs (Theorem 3),
and then showing that DBMs can be expressed as LPS (Theorem 4).

Theorem 3. Consider an LPS whose underlying TN uses a graph G = (V,E) with n nodes, 2n
visible edges, and m hidden edges. The probability distribution represented by this LPS can be
reproduced by a DBM over a graph with 2n nodes, n visible edges, and m+ n hidden edges, where
the decohered edge set ED is in one-to-one correspondence with the purification edges EP of the
LPS.
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Figure 9: (a) Conversion from an LPS to a DBM. Using diagram rewriting rules, each purification
edge joining a pair of LPS cores is expressed as a larger network of copy tensors, which allows the
edge to be seen as a decoherence operator D between the original pair of nodes and a new pair of
dummy nodes ∆1. The result is a DBM associated with an underlying TN with twice as many nodes,
and one decohered edge for every purification edge in the LPS (b) Conversion from a DBM to an
LPS. In this case, we choose a function f mapping the decohered edges η2,3 and η3,4 to nodes 2 and
4, respectively. The dotted boxes show how this can be viewed as defining new cores C(2) and C(4)

as the contraction of the DBM cores A(2) and A(4) with adjacent copy tensors ∆3. The result is an
LPS, where we have used dotted edges to indicate trivial purification edges of dimension 1.

Proof. Starting with a given LPS, we construct a TN matching the description in the Theorem
statement, whose interpretation as a DBM will recover the desired distribution. We begin with
the underlying TN for the LPS, whose n nodes each have one purification edge. We connect each
purification edge to a new hidden node, whose associated tensor is the first-order copy tensor ∆1

with dimension equal to that of the purification edge. This converts all of the purification edges into
hidden edges, which form the decohered edges of the DBM.

Given this new TN and choice of decoherence edges, the equivalence of the DBM distribution
and the original LPS distribution arises from inserting decoherence operators D in the composite
edges connected to the new hidden nodes, and then using copy tensor rewriting rules to express the
composite TN of the DBM as that of the LPS (Figure 9a). Given that the new hidden nodes are
associated with constant tensors with no free parameters, and given that all of the cores defining the
LPS are kept unchanged in the DBM, the overall parameter count is unchanged. This completes the
proof of Theorem 3.

Theorem 4. Consider a DBM defined on a graph G = (V,E) with n nodes and a set of decohered
edges ED ⊆ EH . Given any function f : ED → V assigning decohered edges to nodes of G
incident to those edges, we can construct an LPS with n nodes which represents the same probability
distribution as the DBM. This LPS is defined by a TN with an identical graphical structure to the TN
underlying the original DBM, but with the addition of a purification edge at each node v of dimension
d(v) =

∏
η∈f−1(v) dη , where dη is the bond dimension of edge η and f−1(v) is the set of decohered

edges mapped to node v.

Proof. Despite the somewhat complicated formulation of Theorem 4, the idea is simple. In contrast
to standard BMs, DBMs and LPS both permit direct vertical edges within the composite TN defining
the model’s probability distribution, and the proof consists of shifting these vertical edges from
decohered edges to the nodes themselves. In the case where multiple vertical edges are moved to a
single node, all of these can be merged into one single purification edge by taking the tensor product
of the associated vector spaces. This gives the purification dimension d(v) appearing in the Theorem
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Figure 10: Illustration of the conditional independence of decohered Born machines (DBMs), for a
DBM over RV X1, X2, X3, and Z. ZC := Z is a latent RV associated with the single decohered
edge of the DBM, which is a cut set for the underlying graph. Conditioning on the value of z of Z
splits the composite TN into two independent pieces, with the result being a probability distribution
where XA := X1 and XB := (X2, X3) are independent RVs.

statement, with the overall procedure illustrated in Figure 9b. For nodes which are not assigned any
decohered edges, a trivial purification edge of dimension d(v) = 1 is used. This completes the proof
of Theorem 4.

C Proof of Theorem 2

Theorem 2. Consider a DBM with underlying graph G and decohered edges ED, along with a
subset EC ⊆ ED which forms a cut set for G. Denoting the RVs associated to EC by ZC , and the
RVs associated to the disconnected subsets of G arising from the cut set EC by XA and XB , then the
DBM distribution satisfies the conditional independence property XA ⊥ XB |ZC .

Proof. From the definition of a cut set, the removal of EC from the graph for the underlying TN
partitions G into two disjoint pieces, and the same property holds true for the composite TN giving
the DBM probability distribution. Figure 10 illustrates how conditioning on a decohered edge of
a DBM results in the splitting of the associated decoherence operator into a tensor product of two
rank-1 matrices, which propagate the value of the conditioning value z to both pairs of incident
nodes. Consequently, each composite edge whose value is conditioned on will be removed from
the composite TN, and if the set of conditioning edges form a cut set for G, this will result in the
separation of the post-conditional composite TN into two disconnected pieces. This implies the
independence of the composite random variables XA and XB in the conditional distribution, which
completes our proof.

D Experimental Details

The experiments described in the paper were implemented in JAX [4], and each used a custom
implementation of a general DBM model permitting arbitrary underlying TN graphs. All models
were trained using stochastic gradient descent with an Adam optimizer [18], and fixed learning rate
of 0.001. Each experiment used a fixed number of epochs, which was chosen large enough for the
training and validation losses of each model being evaluated to reach a minimum value.

For each experiment, all models being compared share the same graphical structure, with only the
decohered edge set ED and the bond dimensions differing. In general, the bond dimensions of each
model were chosen to increase with the number of decohered edges, to keep the number of effective
real-valued parameters of the models constant. This decrease in effective parameter count comes
from the fact that any fully decohered region of a DBM leads to the decoupling of all complex phases
for the associated tensor core parameters from the model probabilities. The effective parameter count
dimension of all hidden edges of each model for the three experiments in Section 6 are reported in
Table 2.

All code needed for reproducing our experiments can be found at https://github.com/
jemisjoky/pgm_tn_bm.
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Table 2: Bond dimensions of all model configurations, which increased to keep the number of
real-valued parameters approximately constant between models.

Decohered Regions Bond Dim. # Params

Bars and Stripes w/ FHMM
None (BM) 5 180
One layer 6 180

All (UGM) 8 192

Congressional Voting w/ TTN
None (BM) 3 1098
One layer 3 1071
Two layers 3 1017

Three layers 3 909
All (UGM) 4 1136

Solar Flares w/ TT
None (BM) 10 7980
1/4 of edges 10 7935
1/3 of edges 10 7935
1/2 of edges 10 7935
All (UGM) 14 7770

Figure 11: (a) Action of a gauge transformation on a hidden edge of a TN. The insertion of an
invertible matrix M and its inverse leads to the adjacent tensor cores A and B being transformed into
new tensor coresA′ andB′, which nonetheless describe the same overall tensor when all hidden edges
are contracted together. The use of copy tensors in TNs generally restricts this gauge freedom. (b) The
restriction of a TN to have cores with entirely non-negative entries forces any gauge transformation
to factorize as M = PD, for P a permutation and D a diagonal matrix with strictly positive entries.
We show how this restricted gauge freedom mostly commutes with any copy tensor inserted into the
hidden edge, with copy tensor rewriting rules allowing us to express such gauge transformations as a
trivial permutation of the outcomes of the latent RV associated with the hidden edge. This explains
why hidden edges of non-negative TNs can be expressed as latent RVs without loss of generality,
allowing a faithful representation as a UGM.

E Gauge Freedom in Probabilistic Tensor Networks

Tensor networks matching the description given in Definition 1 exhibit a form of symmetry in their
parameters commonly referred to as gauge freedom. This symmetry is generated by edge-dependent
gauge transformations, wherein an invertible matrix M and its inverse M−1 are inserted in a hidden
bond of a TN, and then applied to the two tensor cores on nodes incident to that hidden edge. This
results in a change in the parameters of the two incident core tensors, which nonetheless leaves the
global tensor parameterized by the TN unchanged. The phenomenon of gauge freedom ultimately
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arises from the close connection between TNs and multilinear algebra, where gauge transformations
on a given hidden edge correspond to changes in basis in the vector space associated with the hidden
edge.

The use of copy tensors in a TN leads to a preferred choice of basis, and thereby breaks the full
gauge freedom of any edge incident to a copy tensor node. It is therefore surprising that for non-
negative TNs, i.e. those with all core tensors taking non-negative values, hidden edges were shown
to be expressable as latent RVs without loss of generality, via the insertion of copy tensors in the
hidden state space (Section 2.1). The generality of this operation means that any non-negative
TN can be converted into a UGM by associating hidden edges with latent RVs, where the original
distribution over only visible edges is recovered by marginalizing over hidden edges. This fact is a key
ingredient in the exact duality between non-negative TNs and UGMs, and differs from quantum-style
probabilistic TN models. For example, attempting to observe the latent states associated to hidden
edges in a BM will generally lead to a change in the distribution over visible edges, even after
marginalizing out these new latent RVs.

We observe here that the generality in associating hidden edges of a non-negative TN to latent RVs is
a consequence of the fact that non-negative TNs already have significantly diminished gauge freedom.
More precisely, in order for a gauge transformation on a hidden edge to maintain the non-negativity of
both tensor cores incident to that edge, we must generally have the change of basis matrix M , as well
as its inverse M−1, possess only non-negative entries. This is a strong limitation, and is equivalent to
the gauge transformation factorizing as a product M = PD, where P is a permutation matrix and D
is a diagonal matrix with strictly positive entries [9]. We illustrate in Figure 11 how this restricted
gauge freedom maintains the overall structure of the copy tensor inserted into a hidden edge, with the
result being an irrelevant permutation of the discrete values of the hidden latent variable associated
with that edge.

The situation is quite different for BMs and DBMs, and we remark that the use of decoherence
operators in a DBM means that the gauge freedom of such models is different than for BMs. In
particular, two BMs whose underlying TNs are related by gauge transformations will necessarily
define identical distributions, whereas the corresponding DBMs resulting from decohering some
gauge-transformed hidden edges may define different distributions. In this sense, the appropriate
notion of gauge freedom for a DBM lies in between that of a BM and a UGM defined on the same
graph, in a manner set by the pattern of decohered edges.

The choice of basis in which decoherence is performed can be treated as an additional parameter of the
model, and we view the interaction between this basis-dependence of decoherence and basis-fixing
procedures related to TN canonical forms an interesting subject for future investigation.
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