
Model based Multi-agent Reinforcement Learning
with Tensor Decompositions

Pascal Van Der Vaart
TU Delft

p.r.vandervaart-1@tudelft.nl

Anuj Mahajan
University of Oxford

anuj.mahajan@cs.ox.ac.uk

Shimon Whiteson
University of Oxford

shimon.whiteson@cs.ox.ac.uk

Abstract

A challenge in multi-agent reinforcement learning is to be able to generalize over
intractable state-action spaces. Inspired from Tesseract [Mahajan et al., 2021], this
position paper investigates generalisation in state-action space over unexplored
state-action pairs by modelling the transition and reward functions as tensors
of low CP-rank. Initial experiments on synthetic MDPs show that using tensor
decompositions in a model-based reinforcement learning algorithm can lead to
much faster convergence if the true transition and reward functions are indeed of
low rank.

1 Introduction

Recent progress in multi-agent RL has been promising towards creating agents which are capable
of generalising over multiple tasks [DeepMind-OEL et al., 2021], they have also demonstrated
effectiveness in dealing with the problem of exploration in a large action space [Mahajan et al.,
2019, Gupta et al., 2020] and overcoming intractability arising from its exponential growth in the
number of agents[Mahajan et al., 2021, Wang et al., 2020a,b] when learning under constraints like
decentralisation. Inspired from Tesseract [Mahajan et al., 2021], which utilises tensor decomposition
structure in factored action spaces, we investigate whether tensor decompositions can be used to
attain generalisation across the state-action space in cooperative multi-agent setting towards obtaining
better sample efficiency. In this position paper, we focus on the model based setting. Initial empirical
results on randomly generated MDPs provide promising evidence for state-action generalisation and
sample efficiency using tensor decompositions over baseline model based algorithms which do not
use the tensor approximation.

In multi-agent reinforcement learning, the goal is to find a policy for multiple agents that performs
well on a given task. Tasks are formalized by Markov decision processes (MDP), which are described
by a transition function and a reward function. In the RL setting, the transition and reward functions
are unknown, and finding a policy that achieves high reward requires exploration to gather data from
the MDP and learn its dynamics. Because the size of the action space grows exponentially with the
amount of agents, it is especially important in multi-agent reinforcement learning to learn with high
sample efficiency as coverage over all state action pairs is not feasible. This work showcases how the
use of low rank CP-decompositions can drastically improve sample efficiency of classic model-based
reinforcement learning algorithms and provide better generalisation when the transition and reward
tensors are of low CP-rank.

2nd Workshop on Quantum Tensor Networks in Machine Learning (NeurIPS 2021), Sydney, Australia.

2 Background
2.1 Tensor decompositions
Definition 1 An order n tensor over a field F with dimensions d1, d2, . . . , dn is a multilinear map
T : Fd1 × Fd2 × · · · × Fdn → F, and can be represented by a n-dimensional d1 × d2 × · · · × dn
array Ti1i2...in such that the mapping is defined as

T (u1, . . . , un) =

d1∑
i1=1

d2∑
i2=1

· · ·
dn∑
in=1

Ti1i2...inu
1
i1u

2
i2 . . . u

n
in

for ui ∈ Fdi . For a set of indices i1, . . . ik ∈ {1, . . . , n} the expression

T (u1, . . . , ui1−1, I, ui1+1, . . . ui2−1, I, ui2+1, . . . , uik−1, I, uik+1, . . . , un)

denotes a di1 × · · · × dik tensor defined by the mapping (ui1 , ui2 , . . . , uik) 7→ T (u1, . . . , un).

The set of order n tensors with dimensions d1, d2, . . . dn over F is denoted by Fd1×d2×···×dn .

The CANDECOMP/PARAFAC (CP) decomposition for tensors can be thought of as a generaliza-
tion of the singular value decomposition for matrices. Related work involving tensors and tensor
decompositions can be found in appendix A.

Definition 2 A rank r CP-decomposition of a tensor T ∈ Fd1×d2×···×dn is a set of vectors
(uil)

i=1,...n
l=1,...r , u

l
i ∈ Fdi and scalars (wl)l=1,...,r ∈ F such that

T =

r∑
l=1

wlu
1
l ⊗ u2l ⊗ · · · ⊗ unl ,

where ‖uil‖ = 1 for all l ∈ {1, . . . , r} and i ∈ {1, . . . , n}.
The tensor T is said to be of CP-rank r if r is the smallest number for which a rank r CP-
decomposition for T exists.

It is clear that if a large n× n× n tensor T has low rank, the search space of an application which
requires an estimate of T can be greatly reduced by incorporating the low rank information. Instead
of estimating n3 parameters, the problem can be described by 3rn parameters in decomposed form
instead. The main idea of this work is to use this fact to efficiently estimate the transition and reward
tensors in discrete multi-agent reinforcement learning problems.

2.2 Reinforcement learning
In reinforcement learning, the goal is to compute a strategy to perform a certain task. Tasks are
formalized as Markov decision processes (MDPs) (S,A, T,R, γ), where S and A are the state and
action spaces, T andR are the transition and reward function and γ is the discount factor. At each time
step t ∈ N an agent chooses an action at ∈ A based on the state st ∈ S. The environment then returns
a reward rt = R(st, at) and the next state st+1 ∼ T (·|st, at). The strategy to choose actions is called
the policy π : S × A → [0, 1] which defines a probability distribution over the actions given the
current state. The goal of the agent is to maximize the expected discounted reward ET,π

[∑H
t=1 γ

trt

]
,

where the expectation is over the states and actions, whose probability distributions are implied by
the transition function T and policy π.

In multi-agent reinforcement learning (MARL), there are multiple agents that interact with the
environment as opposed to only one agent. Each agent has its own action space Ai, which means that
the transition function is now a function S ×A1 × · · · ×An × S → [0, 1] and the reward function is
S ×A1 ×A2 × · · · ×An → [0, 1].

Clearly this can be cast as a single agent reinforcement learning problem by settingA = A1×· · ·×An.
A result of this is that the action space grows exponentially large with the number of agents, further
increasing the requirement of efficient exploration. Instead of casting it as a single agent reinforcement
learning problem, explicitly incorporating the multi-agent paradigm allows to exploit more structure
in the MDP.

2

In this work, this is done by considering the transition function to be a tensor T ∈ RS×A1×···×An×S

such that Tsa1...ans′ = T (s, a1, . . . , an, s
′). The reward function is analogously written as a tensor

R ∈ Rs×a1×···×an . If the tensors T and R are of low rank, models formed by an agent during
training can be expected to generalize across unseen state-action pairs.

3 Methods
3.1 Tensor decomposition algorithms
While computing tensor decompositions is NP-hard in general Hillar and Lim [2013], there exist
algorithms such as Harshman [1970] and Anandkumar et al. [2015] which are proven to converge
in special cases. The algorithm used in this work is an ablation of the alternating rank 1 updates
algorithm presented in Anandkumar et al. [2015]. The restarts, clustering and clipping procedures are
left out to form a shorter and simpler algorithm which still performs well in practice. The algorithm
as used is presented in algorithms 3, 4, and 1. The main idea of the algorithm is to run asymmetric
power updates to compute a good starting value for alternating minimization, which further improves
the accuracy of the decomposition.

3.2 Tensor completion
In the tensor completion problem, the goal is to recover a tensor with only partially observed entries.
For a tensor T ∈ Rd1×···×dn , let Ω ∈ {0, 1}d1×···×dn denote a mask such that Ωi1...in = 1 if and
only if entry Ti1...in has been observed. A method proposed in Jain and Oh [2014] and Liu and
Moitra [2020] involves solving the minimization problem

argmin
{uj

k}
j=1...n
k=1...r∈R

dj ,{wk}k=1...r∈R
‖Ω · T − Ω ·

r∑
k=1

wku
1
k ⊗ u2k ⊗ · · · ⊗ unk‖F ,

where · denotes an entrywise multiplication. Algorithm 1 can be used to solve this problem with a
slight modification to the alternating minimization step as showcased in appendix D.

3.3 Model based reinforcement learning
In model based reinforcement learning agents make models of the environment to plan ahead, instead
of attempting to maximize reward directly. Under the assumption that the transition and reward
tensors are of low rank, using tensor decomposition allows for sample efficient models that generalize
over unseen state-action pairs.

The deterministic reward tensor is estimated using tensor completion, where the unobserved entries
are simply the state-action pairs the agents have never experienced. After enough exploration, enough
entries of the reward tensor will be revealed to reconstruct the entire tensor.

The algorithm presented in this paper follows a very standard model-based reinforcement learning
approach and is presented in algorithm 3.4. The NORMALIZE function is an entry wise division so
that the resulting tensor is a transition tensor, that is the sum over the resulting states is 1. The
POLICYIMPROVEMENT function is clarified in appendix C.

3.4 Relationship to Tesseract
This method differs from Mahajan et al. [2021] because in this work, decompositions of the entire
tensor T ∈ RS×A1×···×An×S and R ∈ RS×A1×···×An are computed. Model based Tesseract instead
considers for each s, s′ ∈ S the A1 × · · · ×A2 tensor T̃ss′ = T (es, I, . . . , I, e

′
s), and computes an

individual tensor decomposition for each state and next state pair. Analogously, it considers for each
state s ∈ S the reward tensor Rs = R(es, I, . . . , I) and computes a decomposition for every state.

Algorithm 1: Alternating rank 1 updates
Input: A tensor T ∈ Rm×n×p and decomposition rank r
Result: {ujk}

j=1...n
k=1...r , {wk}k=1...r such that T ≈

∑r
k=1 wku

1
k ⊗ u2k ⊗ · · · ⊗ unk

({ujk}
j=1...n
k=1...r , {wk}k=1...r) = PowerIteration(T, r) (algorithm 3);

({ujk}
j=1...n
k=1...r , {wk}k=1...r) = AlternatingMinimize(T, {ujk}

j=1...n
k=1...r , {wk}k=1...r) (algorithm 4);

3

In theory, both methods can represent the same transition and reward functions. To see this,
consider for example an MDP with 2 agents, such that the reward tensor is of order 3. Let
R =

∑r
i=1 wixi ⊗ yi ⊗ zi be the true reward tensor. This can represented by Tesseract by set-

ting Rs =
∑r
i=1 wi〈es, xi〉yi ⊗ zi, where es is the s-th standard basis vector. This results in the

combined reward tensor∑
s∈S

es ⊗Rs =
∑
s∈S

es ⊗
r∑
i=1

wi〈es, xi〉yi ⊗ zi =

r∑
i=1

wi
∑
s∈S

es ⊗ 〈es, xi〉yi ⊗ zi = R

Conversely, if R is of the form
∑
s∈S es ⊗ Rs where each Rs is of rank r, then the rank of R is

bounded by |S|r so it can be represented in our framework. Thus, when low rank structure spans
across states, out method would ensure better sample efficiency as it would require fewer number of
parameters.

Algorithm 2: CP-Decomposed state-action space reinforcement learning
Input: An MDP, state space size S, action space sizes A1, . . . An, Hyperparameters:

nepisodes, ntrain, ε, nimprovement iter
Result: Policy π with good performance
D = 0 ∈ NS×A1×···×An×S ;
R = 0 ∈ RS×A1×···×An ;
Initialize random π;
for episode = 1, 2, . . . , nepisodes do

s1 ∼MDP ;

a1 ∼
{
π(s0) with probability 1− ε(episode)

Unif(A) with probability ε(episode)
;

for t = 1, . . . , episode length do
(st+1, rt) ∼MDP (.|st, at);
Dstatst+1

= Dstatst+1
+ 1;

Rstat = rt;

at ∼
{
π(st) with probability 1− ε(episode)

Unif(A) with probability ε(episode)
;

if nepisodes %ntrain = 0 then
T̂ = DECOMP(NORMALIZE(D), rT);
Ω = D > 0;
R̂ = TENSORCOMPLETION(R,Ω, rR);
π = POLICYIMPROVEMENT(π, T̂ , R̂, nimprovement iter);

4 Experiments
4.1 Random transition and reward functions of predefined rank
This experiment involves algorithm 3.4 applied to an MDP described by a randomly generated
transition tensor T and reward tensor R. The MDP has 20 states, and 3 agents with 10 actions each,
leading to 20000 state-action pairs. Both the transition and reward tensors are of rank 5. More
information on how they are generated can be found in appendix E.

We tested three different agents for experiments. The first agent is a baseline agent which uses
no decompositions. It uses the maximum likelihood estimator for T and fills in missing rewards
for unvisited state-action pairs with the mean of the visited rewards. Secondly, an agent using
decomposition across entire state action space for for T and R with three settings of approximate
rank 5 (exact), 3 (insufficient), 10 (overparametrised). The final agent is model based Tesseract with
rank 5 and 1 decompositions. Note that the rank 5 case can represent the correct transition and reward
tensors, but is overparametrised for the task (60000 parameters versus 350 for our rank 5 agent for
the transition function). Similarly, the rank 1 agent will be insufficient for representing the actual
dynamics but will provide faster learning.

4

For each agent, if the slice through the estimated transition tensor T corresponding to a specific state-
action pair contains only zeros, all entries are set to 1

|S| . This means that if there is no estimate for
T (·|s, a1, a2, a3), a uniform distribution is assumed instead. This happens for the no decompositions
agent exactly when a state-action pair has never been visited before.

Each agent is trained for 200 episodes, recomputing their models and applying policy improvement
every 10 episodes. The agents use ε greedy exploration with epsilon decaying from 0.9 to 0.1. During
training, the total episodic rewards, errors in the transition tensor and errors in the reward tensors
are tracked. The entire experiment is ran 20 times, with newly generated T and R for each run.
The optimal reward in each experiment is computed beforehand via policy improvement on the true
functions T and R, and then for each experiment the optimal reward is subtracted from the episodic
rewards so that optimal performance is a reward of 0 for each experiment. Finally, the number of
unique visited state-action pairs is also tracked. The results of the experiment are shown in figures
1, 2 and 5a. Figure 1 shows that algorithm 3.4 significantly outperforms a standard model-based
approach without tensor decompositions in the setting where T and R are of low rank. While the
agent with rank 3 decompositions achieves a slightly sub-optimal policy, the performance seems to
be quite robust against incorrectly guessing the correct rank for the problem.

Interestingly, agents without tensor decompositions outperform the agents that use tensor decomposi-
tions during the first few episodes. This can be attributed to the unrobustness of tensor completion.
Figure 1 shows that for our algorithm, during the first 20 episodes the error in the reward tensor
can be of order 105 and higher, because the optimization problem is very ill-conditioned when little
entries are revealed. Tesseract suffers even more from this problem, as each individual state now
requires sufficiently many revealed entries. A way to overcome these problems could be for example
to take the naive estimate without tensor completion when attempting tensor completion results in
very extreme values, or adding regularization to the optimization problem. Figure 1 also shows that
with sufficiently many revealed entries, our method achieves very good approximates of the reward
tensor. If the approximate reward tensor rank is set correctly (rank 5), the reward tensor is recovered
almost exactly after visiting only 4000 (see figure 5a) or 20% of the state-action pairs. Setting the
rank results in slower convergence, but still yields a reasonably good estimate. Finally, setting the
rank too low causes the agent to be incapable of representing the true reward tensor, but on limited
revealed entries this estimate still outperforms the estimate without decompositions. Tesseract with
rank 5 decompositions takes a long time to get a good estimate, but eventually outperforms our
method with rank 3 decompositions. This is explained by the analysis in 3.4, which showed that
rank 5 Tesseract is in theory capable to represent the true reward tensor, albeit requiring many more
samples in comparison as confirmed by this experiment.

Figure 2 shows the error in transition tensors. Note that the error of Tesseract and the agent without
decompositions increases over time. This is due to the fact that for many states-action pairs, the
default uniform distribution assigning probability 1

|S| to each state is a better estimate than an extreme
distribution resulting from only one observation of that state-action pair. Figure 5a shows that even
after 200 episodes, only around 11000 state action pairs out of 20000 total are visited, meaning
that many state-action pairs are likely to have been visited only once. This means that unless an
agent can combine information from different state-action pairs, it is unfeasible to make a good
transition function estimate. Since using no decompositions assumes every state-action pair to be
independent, there is no generalization across states-action pairs. Tesseract does slightly better as
it attempts to generalize the action space for each state independently, but figure 2 shows that our
method produces significantly better transition tensor estimates by attempting to generalize over the
combined state-action space.

4.2 MDP with degenerate states

In this experiment we test algorithm 3.4 on state degeneracy, a situation where our method can
provide further sample efficiency. State degeneracy can occur when observations are noisy. We
use an MDP with 3 agents, this time with 16 states and each agent has an action space of size 20.
The 16 states are split into 4 groups, where each group has the same transition function of rank
1, and a linearly dependent reward tensor of rank 1. This means that rank 1 Tesseract is expected
to be able to recover exact models after enough iterations. Furthermore, similar to the analysis in
3.4, writing R =

∑
i=1,5,9,13(ei + ei+1 + ei+2 + ei+3) ⊗ Ri where Ri denotes a reward tensor

for each group, reveals that the entire reward tensor is of rank at most 4. Similar to the previous
experiment, we consider the following agents: A baseline agent using no decomposition, Agents

5

0 50 100 150 200
episodes

4

3

2

1

0

to
ta

l r
ew

ar
d

0 50 100 150 200
episodes

20

15

10

5

0

5

10

lo
g

re
wa

rd
 S

SE rank_5_decomp
rank_3_decomp
rank_10_decomp
no_decomp
tesseract_rank_5
tesseract_rank_1
optimal

Figure 1: Total reward per episode at test time (left) and sum of squared errors of the reward tensor
estimate (right) after a number of episodes of training.

0 50 100 150 200
episodes

0.000

0.005

0.010

0.015

0.020

tra
ns

iti
on

 M
SE

0 50 100 150 200
episodes

0.0000

0.0005

0.0010

0.0015

0.0020

tra
ns

iti
on

 M
SE rank_5_decomp

rank_3_decomp
rank_10_decomp
no_decomp
tesseract_rank_5
tesseract_rank_1

Figure 2: Mean squared error of the estimate of the transition tensor after training a number of
episodes in the first experiment. The right plot is a zoomed in version of the left plot.

using decomposition across state action space with ranks 4 and 8, Tesseract with rank 4 and 1. The
entire experiment is repeated 20 times. The results are shown in figures 3, 4 and 5b. Like in the results
of the first experiment, figure 3 shows that the agents that use decompositions accross state-action
space outperform the other agents in terms of total reward obtained. This is mostly attributable to
the performance on the reward tensor error. We also observe that Tesseract is unable to recover a
good reward tensor estimate in the given sample budget. In contrast to the previous experiment, the
transition tensor estimates of the agents that use state-action decompositions do not differ significantly
from the estimates made by Tesseract. This can be explained by the fact that in this experiment,
the groups themselves have entirely independent transition and reward functions, which means that
generalization is only possible within groups. In contrast, the low rank structure imposed on the
entire transition tensor in the first experiment allowed our method to generalize over all states.

5 Conclusion
In this position paper we investigated whether tensor decompositions can be used across state actions
space for better sample efficiency in RL for the model based setting. Our experiments show that an
algorithm which computes CP-decompositions of the environment models has significant advantages
when the MDP is described by low rank transition and reward functions.

0 50 100 150 200
episodes

50

40

30

20

10

0

10

to
ta

l r
ew

ar
d

0 50 100 150 200
episodes

10

5

0

5

10

15

20

lo
g

re
wa

rd
 S

SE rank_8_decomp
rank_4_decomp
no_decomp
tesseract_rank_1
tesseract_rank_4
optimal

Figure 3: Total reward per episode at test time (left) and sum of squared errors of the reward tensor
estimate (right) after a number of episodes of training in the state degeneracy MDP.

6

References
Anuj Mahajan, Mikayel Samvelyan, Lei Mao, Viktor Makoviychuk, Animesh Garg, Jean Kossaifi,

Shimon Whiteson, Yuke Zhu, and Animashree Anandkumar. Tesseract: Tensorised actors for
multi-agent reinforcement learning. In Proceedings of the 38th International Conference on
Machine Learning, volume 139, pages 7301–7312. PMLR, 2021. URL https://proceedings.
mlr.press/v139/mahajan21a.html.

DeepMind-OEL, Adam Stooke, Anuj Mahajan, Catarina Barros, Charlie Deck, Jakob Bauer, Jakub
Sygnowski, Maja Trebacz, Max Jaderberg, Michael Mathieu, Nat McAleese, Nathalie Bradley-
Schmieg, Nathaniel Wong, Nicolas Porcel, Roberta Raileanu, Steph Hughes-Fitt, Valentin Dalibard,
and Wojciech Marian Czarnecki. Open-ended learning leads to generally capable agents. arXiv
preprint arXiv:2107.12808, 2021.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent
variational exploration. In Advances in Neural Information Processing Systems, pages 7611–7622,
2019.

Tarun Gupta, Anuj Mahajan, Bei Peng, Wendelin Böhmer, and Shimon Whiteson. Uneven: Universal
value exploration for multi-agent reinforcement learning. arXiv preprint arXiv:2010.02974, 2020.

Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson, and Chongjie Zhang.
Rode: Learning roles to decompose multi-agent tasks. arXiv preprint arXiv:2010.01523, 2020a.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020b.

Christopher J. Hillar and Lek-Heng Lim. Most tensor problems are np-hard. J. ACM, 60(6), November
2013. ISSN 0004-5411. doi: 10.1145/2512329. URL https://doi.org/10.1145/2512329.

Richard Harshman. Foundations of the parafac procedure: Models and conditions for an "explanatory"
multi-modal factor analysis. UCLA Working Papers in Phonetics, 16, 1970.

Animashree Anandkumar, Rong Ge, and Majid Janzamin. Guaranteed non-orthogonal tensor decom-
position via alternating rank-1 updates, 2015.

Prateek Jain and Sewoong Oh. Provable tensor factorization with missing data. In Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Informa-
tion Processing Systems, volume 27. Curran Associates, Inc., 2014. URL https://proceedings.
neurips.cc/paper/2014/file/c15da1f2b5e5ed6e6837a3802f0d1593-Paper.pdf.

Allen Liu and Ankur Moitra. Tensor completion made practical. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 18905–18916. Curran Associates, Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/dab1263d1e6a88c9ba5e7e294def5e8b-Paper.pdf.

Animashree Anandkumar, Daniel Hsu, and Sham M. Kakade. A method of moments for mixture
models and hidden markov models. In Shie Mannor, Nathan Srebro, and Robert C. Williamson,
editors, Proceedings of the 25th Annual Conference on Learning Theory, volume 23 of Proceedings
of Machine Learning Research, pages 33.1–33.34, Edinburgh, Scotland, 25–27 Jun 2012. PMLR.
URL https://proceedings.mlr.press/v23/anandkumar12.html.

Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, and Matus Telgarsky. Tensor
decompositions for learning latent variable models. J. Mach. Learn. Res., 15(1):2773–2832,
January 2014. ISSN 1532-4435.

Andrzej Cichocki, A. Phan, Qibin Zhao, Namgil Lee, I. Oseledets, Masashi Sugiyama, and Danilo P.
Mandic. Tensor networks for dimensionality reduction and large-scale optimization: Part 2
applications and future perspectives. Found. Trends Mach. Learn., 9:431–673, 2017.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration
for deep neural networks. CoRR, abs/1710.09282, 2017. URL http://arxiv.org/abs/1710.
09282.

7

https://proceedings.mlr.press/v139/mahajan21a.html
https://proceedings.mlr.press/v139/mahajan21a.html
https://doi.org/10.1145/2512329
https://proceedings.neurips.cc/paper/2014/file/c15da1f2b5e5ed6e6837a3802f0d1593-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/c15da1f2b5e5ed6e6837a3802f0d1593-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/dab1263d1e6a88c9ba5e7e294def5e8b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/dab1263d1e6a88c9ba5e7e294def5e8b-Paper.pdf
https://proceedings.mlr.press/v23/anandkumar12.html
http://arxiv.org/abs/1710.09282
http://arxiv.org/abs/1710.09282

Jean Kossaifi, Adrian Bulat, Georgios Tzimiropoulos, and Maja Pantic. T-net: Parametrizing fully
convolutional nets with a single high-order tensor. 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 7814–7823, 2019.

Jean Kossaifi, Antoine Toisoul, Adrian Bulat, Yannis Panagakis, Timothy M. Hospedales, and Maja
Pantic. Factorized higher-order cnns with an application to spatio-temporal emotion estimation.
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 6059–
6068, 2020.

Adrian Bulat, Jean Kossaifi, Georgios Tzimiropoulos, and Maja Pantic. Incremental multi-domain
learning with network latent tensor factorization. In AAAI, 2020.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi,
Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, and Thore Graepel.
Value-decomposition networks for cooperative multi-agent learning based on team reward. In
Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems,
AAMAS ’18, page 2085–2087, Richland, SC, 2018. International Foundation for Autonomous
Agents and Multiagent Systems.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. QMIX: Monotonic value function factorisation for deep multi-agent reinforce-
ment learning. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 4295–4304. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/
rashid18a.html.

Stefano Bromuri. A tensor factorization approach to generalization in multi-agent reinforcement
learning. In 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent
Agent Technology, volume 2, pages 274–281, 2012. doi: 10.1109/WI-IAT.2012.21.

Kamyar Azizzadenesheli, Alessandro Lazaric, and Animashree Anandkumar. Reinforcement learning
of pomdps using spectral methods. 06 2016.

8

https://proceedings.mlr.press/v80/rashid18a.html
https://proceedings.mlr.press/v80/rashid18a.html

A Related work

Work on tensor decompositions in general machine learning include Anandkumar et al. [2012], which
uses the CP-decomposition to learn mixture models and hidden Markov models, and Anandkumar
et al. [2014] learns latent variable models. Another application of tensor methods is to compress
neural networks in Cichocki et al. [2017] and Cheng et al. [2017]. Kossaifi et al. [2019] parametrizes
convolutional nets with a high-order tensor of low rank to reduce over-parameterization, with applica-
tions to spatio-temporal tasks in Kossaifi et al. [2020]. In Bulat et al. [2020] this parametrization is
used for multi-domain image classification.

Previous reinforcement learning methods that attempt to exploit structure in the multi-agent setting
include VDN Sunehag et al. [2018], which models the joint Q-function (see appendix C) as a sum of
the agents individual Q-functions. This is generalised by QMIX Rashid et al. [2018], which learns a
monotonic function of the individual Q-functions instead of taking a sum.

Methods for generalization in multi agent reinforcement learning using specifically tensor decompo-
sitions include Bromuri [2012], where tensor decompositions are used to factorize the Q-function in
model freeQ−learning algorithms. Our method instead factorizes the estimated transition and reward
functions of the MDP in a model based algorithm. This idea was initially proposed in Mahajan et al.
[2021], which contains a model free algorithm and a model based algorithm. The difference between
the model based algorithm in Mahajan et al. [2021] and our method, is that we factorize over the
state-action space, while Mahajan et al. [2021] factorizes only over the action space. This allows our
work to potentially generalize over unseen states instead of only over unseen actions.

Work in tensor decompositions for partially observable MDPs (POMPDs) in a single agent setting
include Azizzadenesheli et al. [2016]. Adapting our method for generalisation in multi agent MDPs
for POMPDs is an interesting future research direction

B Decomposition algorithms

Algorithm 3: Tensor power iteration with deflation

Input: A tensor T ∈ Rd1×···×dn and decomposition rank r, tolerance ε
Result: Vectors {ujk}

j=1...n
k=1...r and scalars {wk}k=1...r such that T ≈

∑r
k=1 wku

1
k ⊗ u2k ⊗ · · · ⊗ unk

for k = 1, . . . r do
for j = 1, . . . , n do

ujk,0 ∼ N (0, 1);

ujk,0 =
uj
k

‖uj
k‖

;

end
while

∑n
j=1 ‖u

j
k,n+1 − u

j
k,n‖2 > ε do

for j=1, . . . , n do

ujk,m+1 =
T (u1

k,m,...,u
j−1
k,m,I,u

j+1
k,m,...,u

n
k,m)

‖T (u1
k,m,...,u

j−1
k,m,I,u

j+1
k,m,...,u

n
k,m)‖

;

end
end
wk = T (u1k, . . . , u

n
k);

wNk = ckw
N
k ;

T = T − wku1k ⊗ u2k ⊗ · · · ⊗ unk ;
end

9

Algorithm 4: Alternating minimization

Input: A tensor T , starting values for {ujk}
j=1...n
k=1...r , {wk}k=1...r

Result: {ujk}
j=1...n
k=1...r , {wk}k=1...r such that T ≈

∑r
k=1 wku

1
k ⊗ u2k ⊗ · · · ⊗ unk

while stopping criterion do
for l = 1, . . . , r do

for j = 1, . . . , n do
ujl = (T −

∑r
k 6=l u

1
k ⊗ u2k ⊗ · · · ⊗ unk)(u1l , . . . , u

j−1
l , I, uj+1

l , . . . , unl);

ujl =
uj
l

‖uj
l ‖

;

end
wl = (T −

∑r
k 6=l u

1
k ⊗ u2k ⊗ · · · ⊗ unk)(u1l , . . . , u

n
l);

end
end

C Policy improvement

Policy improvement is a well known method in reinforcement learning to compute optimal policies
with respect to the MDP parameters T and R. In model based reinforcement learning algorithms, this
is used to compute a good policy after estimating T and R with estimates T̂ and R̂. If the estimates
are close enough, the optimal policy with respect to T̂ , R̂ will also perform well on the actual MDP
described by T,R.

Computing the optimal policy uses the Q-function, which maps each state s and each action a to
the expected reward of executing action a in state s and following policy π afterwards. This can
recursively be written as

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

T (s′|a, s)
∑
a′∈A

π(a′|s′)Qπ(s′, a′)

The value function maps each state to the expected future reward in the state when following policy
π. This can be computed from the Q-function via

V π(s) =
∑
a∈A

Q(s, a)π(a|s)

The main idea of policy improvement is to iteratively select states for which V π(s) <
maxa∈AQ

π(s, a). This means that there exists an action which achieves better reward than the
current policy, so the policy π is updated to use the better action instead. After this, since the policy
has changed, Qπ and V π need to be computed again to repeat this process. This is guaranteed to
converge to an optimal policy eventually on finite state and action spaces.

Algorithm 5: Policy improvement
Input: Starting policy π0
Result: Improved policy π
Set i = 0;
Compute Qπi and V πi ;
while there exist s ∈ S such that V πi(s) < maxaQ

π(s, a) do
Pick s such that V πi(s) < maxaQ

πi(s, a);
Let A∗s,πi

= argmaxaQ
π(s, a);

Define a new policy: πi+1 = πi;
Set πi+1(A∗s,πi

|s) = 1;
i = i+ 1;
Compute Qπi and V πi ;

end

10

D Tensor completion

To modify algorithm 1 for tensor completion, alternating minimization (algorithm 4) can be modified
to solve

argmin
uj
l∈R

dj

‖Ω · T − Ω ·
r∑

k=1

wku
1
k ⊗ u2k ⊗ · · · ⊗ unk‖F

at each iteration, instead of the usual problem

argmin
uj
l∈R

dj

‖T −
r∑

k=1

wku
1
k ⊗ u2k ⊗ · · · ⊗ unk‖F .

This leads to the update

ujl =
(Ω · T − Ω ·

∑r
k 6=l wku

1
k ⊗ u2k ⊗ · · · ⊗ unk)(u1l , . . . , u

j−1
l , I, uj+1

l , . . . , unl)

Ω(u1l · u1l , . . . , u
j−1
l · uj−1l , I, uj+1

l · uj+1
l , . . . , unl · unl)

instead of the usual update displayed in algorithm 4. Similarly, the update for the weights is given by

wl =
(Ω · T − Ω ·

∑r
k 6=l wku

1
k ⊗ u2k ⊗ · · · ⊗ unk)(u1l , . . . , u

n
l)

Ω(u1l · u1l , . . . , unl · unl)
.

This modification is inspired by the tensor completion method in Jain and Oh [2014], which is proven
to work for symmetric orthogonal tensors.

E Tensor generation details

The target reward and transition tensors in the experiments are generated by algorithm 6. The weights
are chosen to be w = linspace(0.1, 1) for the reward tensor in the first experiment.

Algorithm 6: Tensor generation
Input: Desired shape (d1, . . . , dn) and rank r, weights w ∈ Rr
Result: Rank r tensor with dimensions d1, . . . , dn
for i = 1, . . . , n do

for l = 1, . . . , r do
uli ∼ N (0, Idi);

uli =
ul
i

‖ul
i‖

;

T =
∑r
l=1 wlu

l
1 ⊗ · · · ⊗ uln;

A complication is that the transition tensor must satisfy
∑
s′ Tsa1a2a3s

′ = 1. It is difficult to directly
generate a tensor of fixed rank with this property, and normalizing a tensor by setting

T ′s1a1a2a3s2 =
Ts1a1a2a3s2∑
s′ Ts1a1a2a3s′

changes the rank of the tensor. This is overcome by iteratively normalizing, computing a new
decomposition of higher than the desired rank, and then truncating it to the desired rank. Repeating
this as shown in algorithm 7 appears to converge in practice, enabling the generation of a valid
transition tensor that is arbitrarily close to to a tensor of desired rank.

11

Algorithm 7: Transition tensor generation
Input: Desired shape (d1, . . . , dn) and rank r, tolerance ε
Result: Approximately rank r transition tensor with dimensions d1, . . . , dn
T = GenerateTensor((d1, . . . , dn), r, w);
while ‖Normalize(T)− T‖F > ε do

T = Normalize(T);
T = TensorDecomp(T, 2r);
T = Truncate(T, r);

T = Normalize(T);

0 50 100 150 200
episodes

0.001

0.002

0.003

0.004

0.005

0.006

tra
ns

iti
on

 M
SE

0 50 100 150 200
episodes

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

tra
ns

iti
on

 M
SE

rank_8_decomp
rank_4_decomp
no_decomp
tesseract_rank_1
tesseract_rank_4

Figure 4: Mean squared error of the estimate of the transition tensor after training a number of
episodes in the state degeneracy MDP. The right plot is a zoomed in version of the left plot.

F Extra experiment figures

0 50 100 150 200
episodes

0

2000

4000

6000

8000

10000

un
iq

ue
 v

isi
te

d
st

at
e-

ac
tio

n
pa

irs

rank_5_decomp
rank_3_decomp
rank_10_decomp
no_decomp
tesseract_rank_5
tesseract_rank_1

(a) Number of unique states visited after training
for a number of episodes in the first experiment.
The MDP has 20000 unique states in total

0 50 100 150 200
episodes

0

2000

4000

6000

8000

10000

un
iq

ue
 v

isi
te

d
st

at
e-

ac
tio

n
pa

irs

rank_8_decomp
rank_4_decomp
no_decomp
tesseract_rank_1
tesseract_rank_4

(b) Number of unique states visited after training
for a number of episodes in the state degeneracy
experiment. The total number of state-action pairs
in the MDP is 128000

12

	Introduction
	Background
	Tensor decompositions
	Reinforcement learning

	Methods
	Tensor decomposition algorithms
	Tensor completion
	Model based reinforcement learning
	Relationship to Tesseract

	Experiments
	Random transition and reward functions of predefined rank
	MDP with degenerate states

	Conclusion
	Related work
	Decomposition algorithms
	Policy improvement
	Tensor completion
	Tensor generation details
	Extra experiment figures

