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Abstract

Improving the interpretability and efficiency of machine learning methods are
challenging and important issues. The concept of entanglement, which is a quantity
from quantum information science, may contribute to these issues. In this extended
abstract, we introduce two tensor-network (TN) machine learning methods, which
concerns feature extraction and compressed sensing, respectively, based on en-
tanglement. For the former [12], the entanglement obtained from matrix product
state (MPS) is used as a measure of the importance of the features in the real-life
datasets. An entanglement-based feature extraction algorithm is proposed, and
used to improve the efficiency of TN machine learning. In the latter [13], TN
states are used to realize efficient compressed sampling by entanglement-guided
projective measurements. This scheme can be applied in the future to compress
and communicate the real-life data by entangled qubits.

1 Introduction

Classical machine learning models such as neural networks are sometimes called “black boxes”, since
it is hard to understand the logic behind them. Improving the interpretability of machine learning is
becoming increasingly important [1–4]. As a mathematical model, tensor network (TN) has been
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used to effectively represent a large class of quantum many-body states that satisfy the area law of
entanglement entropy [5–7]. The powerful representation ability and high interpretability of TN play
important roles in the quantum-inspired and quantum machine learning [8–10].

TN can be directly used for the classification tasks as a probabilistic model, where the entanglement
is shown capable to characterize the importance of features. This method can be regarded as a
TN version of sensitivity analysis [11]. The feature extraction algorithm based on entanglement in
Ref [12] extracts the important features from the original dataset and improves the efficiency of TN
machine learning. Numerical experiments show that the number of features in MNIST dataset can be
reduced to 1/10 with little harm to the accuracy.

The TN is also used for the compressed sensing, which can reduce the complexity of quantum
communication for the real-life information [13]. In recent years, the number of controllable qubits
has increased rapidly [14–16], while quantum measurements and communication are still expensive
and extremely challenging for the real-life data. One possible way to improve the efficiency is to
combine the compression and communication in a unified process. Towards this direction, tensor
network compressed sensing (TNCS) was proposed [13] based on MPS (also called Born machine)
and its entanglement properties. Specifically, the receiver recovers the whole information from a
small piece of it by implementing an entanglement-guided projective measurement protocol on the
MPS. The numerical experiments show on MNIST and Fashion-MNIST datasets that the TNCS is
accurate and efficient. Thanks to the close connections between TN and quantum states, TNCS can
be readily generalized to quantum encrypted communications based on multi-qubit entangled states.

2 Feature extraction based on entanglement

The first step of the MPS-based feature extraction is to map the images to many-qubit quantum
states. For instance, the n-th pixel xn of the image x is mapped to a one-qubit state given by a
two-dimensional normalized vector

xn → |s(xn)⟩ = cos(xnπ/2) |0⟩+ sin(xnπ/2) |1⟩ (1)

where |0⟩ and |1⟩ represent the spin-up and spin-down states, respectively. An image that contains
L pixels is mapped to a L-qubit product state v =

∏L
⊗n=1 |s(xn)⟩. An MPS is trained to map a

given product state to the prediction of its classification, named as MPS classifier. As MPS represents
essentially a 1D state, the 1D path to cover the 2D image by the MPS is flexible but critical. Ref. [12]
uses two kinds of entanglement entropy to optimize the path. Single-site entanglement entropy
(SEE) describes the amount of entanglement between a specific qubit and the rest, and bipartite
entanglement entropy (BEE) describes that between the qubits on the two halves of the 1D path.
Known from the quantum information theories, the qubits with small entanglement in MPS have less
quantum correlations with the rest of system. In accordance, the numerical results given below show
that the features whose corresponding qubits are largely entangled in the MPS classifier contribute
more information to the classification results, and they should be retained. The entanglement-based
feature extraction algorithm is proposed by optimizing the path based on the SEE to concentrate the
important features in the middle and cutting the tails of the MPS according to the BEE to retain only
L̃ features with largest BEE.

The results from the “1-7” binary classifier (for images with labels “1” and “7”) on MNIST are
given as an example. Fig. 1 (a) shows the BEE and SEE of the MPS classifiers. The darkness
of each dot indicates the strength of SEE, and the thickness of each bond indicates the BEE. An
overlapped image of “1” and “7” emerges from the important features with dark dots connected
with strong bonds. These dots give the features that will be extracted. Fig. 1 (b) demonstrates the
same quantities, where the MPS is trained by the images after implementing the discrete-cosine
transformation (DCT) [17–19]. In accordance with the experience in the computer vision that the
lower-frequency parts are usually more important, the dark dots connected with strong bonds appear
near the top-right corner. In Fig. 1 (c), the path is optimized by arranging the qubit with larger SEE
closer to the middle of the path, and the features arranged at the non-entangled tails of the path are
discarded according to BEE. This respects the quantum correlations indicated by the entanglement
entropies, and leads to a better extraction.

For the ten-class classification on MNIST dataset, Fig. 2 shows the testing accuracy with different
numbers of the extracted features L̃ using the feature extraction explained above. The feature
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Figure 1: The entanglement properties of the ‘‘1–7” binary MPS classifier using different paths
(which show how the MPS covers the 2D images). Each point corresponds to one feature. The
size and darkness of nodes represent the SEE’s strength on each site. The thickness of each bond
represents the strength of the BEE. See more details in the main text. These figures are reused from
Ref. [12].

extraction is tested on both the original data and frequency components after DCT. The results
show that both DCT and path optimization can improve the accuracy with a fixed number of the
retained features. In particular when both strategies are applied, the accuracy is 88.69% with only
40 features. Note these 40 features are simply selected from the original features. Even using DCT,
the combination (linear transformation) of the features is independent to the samples. This means
the importance of the original features are directly evaluated. It is different from some other feature
extraction schemes such as principle component analysis (PCA) [20], where the combination (linear
transformation) of the features depends on the samples. Thus, one cannot directly evaluate the
importance of the pixels in images by PCA.

Figure 2: The classification accuracy on the test dataset versus the number of the retained extracted
features L̃. The path optimization (PO) on frequency space gives the best results. This figure is
reused from Ref. [12].

3 Compressed sensing based on matrix product state and entanglement

As the number of usable qubits rises fast, it becomes increasingly important to explore algorithms
with many-qubit states. Towards this aim, TNCS is proposed as a quantum-inspired compressed
sensing scheme, and can be generalized to quantum set-ups for the encrypted communications of the
real-life data.

The main idea of TNCS is to compress the information by implementing designed projective measure-
ments on an trained MPS |ψ⟩. Let us consider the following scenario. Alice wants to send an image
of hand-written digit “3” to Bob, while she intends to only send a small number of pixels publicly

3



Figure 3: Average peak signal-to-noise ratio (PSNR) of the constructed images in the testing dataset
of the handwriting digits “3” in MNIST and the dresses in fashion-MNIST. Choosing features with
high entanglement (i.e., EO) and decompressing the data by post-selection gives the best result. These
figures are reused from Ref. [13].

or through an unsafe channel. To make the communication safe, Alice provides an generative MPS
|ψ⟩ [21] to Bob. This MPS is trained to capture the probability distribution of the training set of many
“3” images. Then, Bob can acquire a partially projected MPS by collapsing the pixels sent from Alice.
The rest pixels that Bob wants to recover can be obtained from a separable state that has the minimum
distance to the projected MPS. Bob can safely decode the unsent pixels from the projected state (the
separable state) by measuring every qubit (one-shot) or estimating the dominant eigenstates of the
one-qubit reduced density matrices (post-selection).

In Fig. 3, we present the numerical results of recovering images in MNIST and Fashion-MNIST using
TNCS, where the performance is characterized by the average peak signal-to-noise ratio (PSNR).
Different methods to encode and decode the information using TNCS with different virtual bond
dimensions χ of the MPS are tested, where χ determines the complexity of the MPS. The numerical
results on both datasets show that measuring the qubits from higher entangled to lower entangled
qubits (namely entanglement ordering, EO in short) is better than other ways, such as the order
according to the variance (VO) or random orders (RO). Besides, the information decoded by post-
selections shows higher accuracy than that by one-shot measurements. With EO and post-selections,
TNCS permits to compress and communicate real-life information more accurately and efficiently.

4 Summary

In this extended abstract, we introduce two quantum-inspired algorithms for feature extraction
and compressed sensing. These two schemes achieve impressive performance in the numerical
experiments on the real-life datasets. These works shed light on improving the interpretability of
machine learning by incorporating with TN and entanglement. With sufficient controllable qubits
and the techniques on state preparation in the future, TNCS can be readily applied for encrypted
communications of real-life messages by preparing the required MPS’s with entangled qubits. In the
future, these two entanglement-based methods can also be extended to TN’s with more sophisticated
architecture and be verified with more complex datasets.
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