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Abstract

Latent factor models are canonical tools to learn low-dimensional and linear em-
bedding of original data. Traditional latent factor models are based on low-rank
matrix factorization of covariance matrices. However, for higher-order data with
multiple modes, i.e., tensors, this simple treatment fails to take into account the
mode-specific relations. This ignorance leads to inefficiency in analysis of complex
structures as well as poor data compression ability. In this paper, unlike covariance
matrices, we investigate high-order covariance tensor directly by exploiting tensor
ring (TR) format and propose the Bayesian TR latent factor model, which can
represent complex multi-linear correlations and achieves efficient data compression.
To overcome the difficulty of finding the optimal TR-ranks and simultaneously
imposing sparsity on loading coefficients, a multiplicative Gamma process (MGP)
prior is adopted to automatically infer the ranks and obtain sparsity. Then, we
establish efficient parameter-expanded EM algorithm to learn the maximum a
posteriori (MAP) estimate of model parameters.

1 Introduction

Latent factor models provide promising tools for inferring latent structures and dimension reduction
[2, 1, 4, 11]. Traditional latent factor models aim to tackle with vector features and seek for low-
dimensional linear embedding of original data. Specifically, supposing the data have P×P covariance
matrix V , latent factor models find a low-rank representation V =WW ᵀ +Σ, whereW ∈ RP×K
is the loading matrix with K � P and Σ is diagonal. Adopting this approximation, we can use K
latent factors to represent the original data for downstreaming learning tasks, such as clustering and
classification. Despite the achievements of traditional latent factor models, they are not designed
to model higher-order data, i.e., tensors. The naïve vectorization may suffer from the curse of
dimensionality and fail to take into account the mode-specific relations.

To overcome these drawbacks, we try to leverage the merits of tensor networks (TNs) to factor models.
In this work, instead of finding low-rank approximation of covariance matrices, our motivation is to
directly investigate tensor decomposition for covariance tensors. For higher-order data, we reckon that
the covariances can be naturally represented by tensors. For example, for a matrix data Y (n) ∈ RI×J ,
the covariance V is an order-4 tensor of shape I × J × I × J, where Vijmn = var(Y ij ,Y mn). To
model the covariance tensor, we suppose that it admits the TR format [10].

Since the TR-ranks is a vector, it is hard to tune the TR-ranks as well as the factor numbers, which
are shown to be essential to the performance. Moreover, it is desirable to obtain sparse loading core
tensors for learning interpretable latent factors. To address these issues, we extend the multiplicative
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Gamma process (MGP) prior [1] to TR format, for both global and local sparsity. Then, we establish
efficient Parameter-eXpanded EM (PX-EM) algorithm for maximum a posteriori (MAP) estimate.

2 Preliminaries

2.1 Bayesian Latent Factor Model

Considering N observed data {y(n)}Nn=1 ∈ RP , the generic form of a latent factor model is [1]

y(n) =Wη(n) + ε(n), ∀n = 1, . . . , N, (1)

where W ∈ RP×K is called the loading matrix, η(n) ∈ RK are latent factors and ε(n) ∈ RP
are noises. The latent factors are supposed to follow standard Gaussian distribution, i.e., η(n) ∼
N (0, IK). Moreover, suppose ε(n) ∼ N (0,Σ), where Σ = diag(σ2

1 , . . . , σ
2
P ). Under such condi-

tions, we have y(n) ∼ N (0,V ), where V = WW ᵀ + Σ. Hence, the main task of latent factor
models is to find a low-rank representation of the covariance matrix.

2.2 Tensor Ring Decomposition

Now we introduce some basics of the Tensor Ring (TR) decomposition [10], which is also known as
matrix product states in TN. For an order-D tensor X ∈ RI1×···×ID , the TR format denoted as

X =�Q(1), . . . ,Q(D) �, (2)

where Q(d) ∈ RRd×Id×Rd+1 ,∀d = 1, . . . , D are core tensors and RD+1 = R1. The sequence
{Rd}Dd=1 is called TR-rank. Each element of the full tensor X can be expressed as matrix product

of the core tensors, namely, X i = tr
(
Q(1)[id] · · ·Q(D)[iD]

)
, where Q(d)[id] ∈ RRd×Rd+1 is the

id-th lateral slice of the d-th core tensor.

The subchains of TR is defined as tensor contractions among a subsequence of cores tensors. For ex-
ample, the left subchain Q<d ∈ RR1×

∏d−1
j=1 Ij×Rd , right subchain Q>d ∈ RRd+1×

∏D
j=d+1 Ij×R1 are

defined as Q<d[i1 · · · id−1] =
∏d−1
j=1 Q

(j)[ij ] and Q>d[id+1 · · · iD] =
∏D
j=d+1Q

(j)[ij ]. Similarly,

we can define Q 6=d ∈ RRd+1×
∏D

j=1,j 6=d Ij×Rd . If X admits the TR format (2), then

X [d] = Q
(d)
(2)(Q

6=d
[2] )

ᵀ, ∀d = 1, . . . , D, (3)

whereQ(d)
(2) andQ6=d[2] are classical mode-2 unfolding and mode-2 unfolding respectively [10].

3 Bayesian Tensor Ring Latent Factor Model

In this section, we introduce the proposed Bayesian tensor ring latent factor (TRLF) model. By using
the TR format, TRLF is suitable to model high dimensional data. Moreover, by using MGP prior, our
model can obtain low-rank and sparse factors.

Model Formulation In stead of finding low-rank matrix factorization of the covariance matrix, i.e.,
Eq. (1), we generalize the latent factor model to higher-order data. Now suppose the observed data is
an order-D tensor Y(n) ∈ RP1×···×PD . For N observations, we stack them into an order-(D + 1)
tensor, denoted as Y ∈ RP1×···×PD×N . Then we extend Eq. (1) using the TR format, namely,

Y =�Q(1), . . . ,Q(D),η � +E, (4)

where Q(d) ∈ RRd×Pd×Rd+1 are loading core tensors, η ∈ RRD×N×R1 is the latent factor and E is
the noise tensor with the same size of the data. Since the latent factors are matrices here, we assume
that they follow the standard matrix Normal distribution, namely,

η(n) ∼MN (0, IRD+1
, IR1), ∀n = 1, . . . , N. (5)

Moreover, we suppose all the noises independently follow Gaussian distribution,

E(n)
p1···pD ∼ N (0, τ−1), ∀n = 1, . . . , N. (6)
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Note that instead of one single loading matrix W in Eq. (1), our model represents the loading
matrices by D loading core tensors {Q(d)}Dd=1. Such construction has two main advantages. First,
the core tensors have a much more compact form. If we vectorize the data Y , the size of the loading
matrix grows exponentially with tensor order D. However, by directly tackle with the tensors, the
parameter numbers grow linearly with D. Second, in our model, the core tensors are stacked in a
deep and hierarchical manner, which can capture complex multi-linear relations.

Despite the enormous size of parameters, the naïve vectorization dismisses the mode-specific re-
lations of tensor data. To this end, we introduce the covariance tensor for tensor data Y(n), i.e.,
Vp1···pDp′1···p′D = var(Y(n)

p1···pD ,Y
(n)
p′1···p′D

), where V is order-(2D). By adopting (4), we have

Vp1···pDp′1···p′D = τ−1 + tr
(
Q(1)[p1] · · ·Q(D)[pD] · (Q(D)[p′D])

ᵀ · · · (Q(D)[p′D])
ᵀ
)
.

The low-rank covariance tensor follows a symmetric TR format. If we reshape V to matrix form, this
is a matrix-TR format, which is a much more expressive extension of the Kronecker structure [7].
Indeed, given Eq. (3), (4), (5) and (6), by proper permutations and reshapings, we have

vec(Y(n)) ∼ N (0,V ), (7)

where V = Q≤D[2] (Q≤D[2] )ᵀ + diag(τ−1).

Prior Distributions To get sparse loading core tensors, we extend the Multiplicative Gamma
Process (MGP) [1] to multi-way scenario. For each elements of the core tensors, we assume

Q
(d)
jh [i] | φ

(d)
jih, u

(d)
j , u

(d+1)
h ∼ N

(
0, (φ

(d)
jih)
−1(u

(d)
j )−1(u

(d+1)
h )−1

)
,

for i = 1, . . . , Pd, j = 1, . . . , Rd, h = 1, . . . , Rd+1 and d = 1, . . . , D, where {u(d)}Dd=1 are global
shrinkage prior to induce sparse and low-rank estimators and {φ(d)}Dd=1 are local shrinkage prior to
prevent the model from over shrinkage. Then, we put the MGP on the global shrinkage parameters u,

u
(d)
h =

h∏
l=1

δ
(d)
l , δ

(d)
l ∼ Ga(αδ, 1),

where αδ is set larger than 1 to encourage sparsity. Furthermore, the local shrinkage follows Gamma
distribution φ(d)jih ∼ Ga(ν, ν). Finally, we assume the noise precision follows τ ∼ Ga(ατ , βτ ).

Identifiability As most latent factor models, the proposed model is not identifiable. To be specific,
if we apply some orthogonal transformations on the neighborhood core tensor, for instance, let

Q̃
(d)

[i] = Q(d)[i]P ᵀ and Q̃
(d+1)

[j] = PQ(d)[j], where P ᵀP = I , we have Q̃
(d)

[i] · Q̃
(d+1)

[j] =

Q(d)[i] ·Q(d+1)[j] and the covariance estimation does not change. This unidentifiability sometimes
makes the posterior hard to be optimized. To this end, we adopt the parameter-expansion technique
to optimize the transformation and establish a PX-EM algorithm [8, 11].

4 Experiments

4.1 Covariance Estimation

We investigate the covariance estimation ability of our model on both synthetic and real data. We
compare our model with the following baselines: 1). LW, a James-Stein type shrinkage model[6]. 2).
POET [3], which is a low rank matrix model. 3). InfLF [1], the Infinite Latent Factor model, which
can be regarded as a vector form of our model. 4). HOLQ [5], the Higher-Oder LQ decomposition,
which is a generalization of Tucker decomposition. To evaluate the performance, we use the Log-
Euclidean Distance (LED) [9], which is a distance for symmetric positive definite matrices.

We consider data of feature length 1000 and different sample sizes. We pick 4 kind of loading matrices,
1). EXP, which is generated using Exponential functions, e.g., W exp(i, j) = a exp(−(i − j)2/b),
and then the covariance matrix is computed by V exp = W expW

′
exp + τI. 2). PED, which is a

Periodic functionW ped(i, j) = a exp(− sin2(π|i− j|)/b) and V ped =W pedW
′
ped + τI. 3). LIN
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⊗ EXP, which is computed by V lin⊗ped =W lin ⊗W pedW
′
ped + τI, whereW lin(i, j) = ai · j.

4). LIN⊗ EXP, which is computed by V lin⊗ped =W lin⊗W pedW
′
ped+ τI. We set τ = 1e−3 for

all the cases. Finally we sample the data from Gaussian distributionN (0,V ). We choose sample size
of N = {100, 500, 1000, 1500} and repeat every experiment for 50 times. The results are shown in
Figure 1. We plot the median value, 1/4 and 3/4 quantiles of all the experiments. For the simulation
data, our model outperforms the baseline models, especially when the sample size is small.

(a) EXP (b) PED (c) LIN ⊗ EXP (d) LIN ⊗ PED

Figure 1: Results of covariance estimation in synthetic data analysis. Each subfigure shows results of
different shapes. The x-axis is sample sizes and the y-axis is the LED.

4.2 Supervised Learning with Extracted Factors

In this subsection, we show that the TR/TTLF model actually learn some meaningful latent factors of
the original data. We use the U.S. Postal Service (USPS) data to illustrate the experiments1. This
dataset totally consists of 9298 grayscale images of the handwritten digits from 0 to 9. For each of
the images, the shape is 16× 16 and the value ranges from −1.0 to 1.0. The whole dataset is split
into a training set of size 7291 and a test set of size 2007. We compare our model with the InfLF and
tensorize each image to 4× 4× 4× 4 for our model.

Figure 2: Classification accuracy.

We firstly use TR/TTLF model to extract the la-
tent factors without using the information about
the labels. Then we feed the learned latent fac-
tors to train a SVM classifier. The results are
shown in Figure 2. We can see that the classifi-
cation accuracy increases as the factor number
growing. All the latent factor models improve
the performance of the vanilla SVM and the
TTLF has the best results. The classification
experiment reveals that our model is potential
as an unsupervised data preprocessing method.
It reduces the feature dimension significantly
while increasing the classification accuracy.

5 Conclusion and Future Work

In this paper, we try to combine the Bayesian latent factor model with TNs. By assuming the
covariances are highly structured and can be approximated by TT/TR format, we design the TRLF
model to extract latent factors of the original data. We adopt the MGP prior to impose low-rank
and sparse latent factors simultaneously and designed efficient PX-EM algorithm to find the MAP
estimate. Results show that our model outperforms in several high-dimensional modeling problems.
For future research, we are interested in several directions: 1) Non-linear extensions of our model
using neural networks; 2) Scalable inference algorithms for large datasets, such as amortized inference;
3) Exploring the TN representations of covariance matrices in other fields.
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