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Abstract

We consider the problem of multiway clustering in the presence of unknown degree
heterogeneity. Such data problems arise commonly in applications such as recom-
mendation system, neuroimaging, community detection, and hypergraph partitions
in social networks. The allowance of degree heterogeneity provides great flexibility
in clustering models, but the extra complexity poses significant challenges in both
statistics and computation. Here, we develop a degree-corrected tensor block model
with estimation accuracy guarantees. We present the phase transition of clustering
performance based on the notion of angle separability, and we characterize three
signal-to-noise regimes corresponding to different statistical-computational behav-
iors. In particular, we demonstrate that an intrinsic statistical-to-computational
gap emerges only for tensors of order three or greater. Further, we develop an
efficient polynomial-time algorithm that provably achieves exact clustering under
mild signal conditions. The efficacy of our procedure is demonstrated through both
simulations and analyses of Peru Legislation dataset.

1 Introduction
Multiway arrays have been widely collected in various fields including social networks [4], neuro-
science [22], and computer science [18]. Tensors effectively represent the multiway data and serve as
the foundation in higher-order data analysis. One data example is from multi-tissue multi-individual
gene expression study [23, 14], where the data tensor consists of expression measurements indexed
by (gene, individual, tissue) triplets. Another example is hypergraph network [12, 11, 3, 15] in social
science. A K-uniform hypergraph can be naturally represented as an order-K tensor, where each
entry indicates the presence of K-way hyperedge among nodes (a.k.a. entities). In both examples,
identifying the similarity among tensor entities is important for scientific discovery.

This paper studies the problem of multiway clustering based on a data tensor. The goal of multiway
clustering is to identify a checkerboard structure from a noisy data tensor. Fig. 1 illustrates the noisy
tensor and the underlying structures discovered by multiway clustering methods. The checkerboard
structure serves as a meta tool to many popular structures including the low-rankness [26], latent space
models [24], and isotonic models [21]. In the hypergraph example, the multiway clustering aims to
identify the underlying block partition of nodes based on their higher-order connectivities; therefore,
we also refer to the clustering as higher-order clustering. The most common model for higher-order
clustering is called tensor block model (TBM) [7, 25], which extends the usual matrix stochastic
block model [1] to tensors. The matrix analysis tools, however, are sub-optimal for higher-order
clustering. Tensor tools for solving block models have received increased interest recently [13, 25].

TBM suffers from drawbacks to model real world data in spite of the popularity. The key underlying
assumption of block model is that all nodes in the same community are exchangeable; i.e., the nodes
have no individual effects apart from the block effects. However, the exchangeability assumption is
often non-realistic. Each node may contribute to the data variation by its own multiplicative effect.
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Such degree heterogeneity appears commonly in social networks. For example, regular block model
fails to model the Karate Club network [5] without addressing degree heterogeneity.

tensor block model (TBM)

Noisy tensor Underlying structure

degree-corrected tensor

   block model (dTBM)

Underlying structure

Figure 1: Examples for order-3 tensor block model (TBM) with and without degree correction. Both TBM and
dTBM have four communities on each mode, while dTBM allows a richer structure with degree heterogeneity.

We develop the degree-corrected tensor block model (dTBM) to account for the degree het-
erogeneity. The dTBM combines a higher-order checkerboard structure with degree parameter
θ = (θ(1), . . . , θ(p))T to allow heterogeneity among p nodes. Fig. 1 compares the underlying
structures of TBM and dTBM with the same number of communities. The dTBM allows varying
values within the same community, thereby allowing a richer structure.

Our contributions. The primary goal of this paper is to provide both statistical and computational
guarantees for dTBM. Our main contributions are summarized below.
• We develop a general dTBM and establish the identifiability for the uniqueness of clustering using
the notion of angle seperability.
• We present the phase transition of clustering performance with respect to three different statistical
and computational behaviors. We characterize, for the first time, the critical signal-to-noise (SNR)
thresholds in dTBMs, revealing the intrinsic distinctions between (matrix) biclustering and (tensor)
higher-order clustering. Specific SNR thresholds and algorithm behaviours are depicted in Fig. 2.
• We provide an angle-based algorithm that achieves exact clustering in polynomial time under mild
conditions. Simulation and data studies demonstrate the outperformance of our algorithm compared
with existing higher-order clustering algorithms.
The last two contributions, to our best knowledge, are new to the literature of dTBMs.

Gao et al [10] Han et al [13] Ke et al [15] Ghoshdastidar et al [11] Ours
Applicable to tensors × √ √ √ √

Allow degree heterogeneity
√ × √ √ √

Allow various data types × √ × √ √
Misclustering rate (for order 2) exp(−p) exp(−p) p−1 p−1 exp(−p)

Table 1: Comparison between previous methods with our method.

statistically impossible computationally efficientstatistically possible but computationally inefficient
SNR

Figure 2: SNR thresholds for statistical and computational limits in order-K dTBM with dimension (p, ..., p).
The SNR gap between statistical possibility and computational efficiency exists only for tensors with K ≥ 3.

Related work. We emphasize the comparisons that set our work apart from earlier literature from two
perspectives—models and algorithms. From the model perspective, our work extends the previous
degree-corrected model from matrices to tensors. There is a huge literature on degree-corrected
matrix models; see the review paper [1] and the references therein. The tensor counterparts, however,
are relatively less understood. Tab. 1 summarizes the most relevant models for higher-order clustering.
Earlier tensor methods either fail to allow degree heterogeneity [9, 13, 29, 12, 16], or suffer from sub-
optimal misclustering rates [15, 11, 7]. In contrast, our method addresses the degree heterogeneity,
allows discrete and continuous entries, and achieves exponentially fast rate in clustering tasks.

From the algorithm perspective, our methods generalize the recent global-to-local strategy for
matrix learning [10, 8, 27] to tensors [13, 2, 16]. Despite the conceptual similarity, we address
several fundamental challenges associated with this non-convex, non-continuous problem. We
show the insufficiency of the conventional tensor HOSVD [17], and we develop a weighted higher-
order initialization that relaxes the eigen-gap separation condition. Furthermore, our local iteration
leverages the angle-based clustering in order to avoid explicit estimation of degree heterogeneity. Our
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bounds reveal the interesting interplay between the computational and statistical errors. We show that
our final estimate provably achieves the exact clustering within only polynomial-time complexity.

Notation. We use lower-case letters (e.g., a, θ) for scalars, lower-case boldface letters (e.g., a,θ) for
vectors, upper-case boldface letters (e.g., X,Y ) for matrices, and calligraphy letters (e.g., X ,Y) for
tensors of order three or greater. We use | · | for the cardinality of a set and 1{·} for the indicator
function. For an integer p ∈ N+, we use the shorthand [p] = {1, 2, ..., p}. For a p-length vector
a = (a1, . . . , ap), we use aI to denote the sub-vector by restricting the indices in the set I ⊂ [p]. We
use ∥a∥ = (

∑
i a

2
i )

1/2 to denote the ℓ2-norm, ∥a∥1 =
∑

i |ai| to denote the ℓ1 norm of a. For two
vector a, b of the same dimension, we denote the angle between a, b by

cos (a, b) = ⟨a, b⟩ / ∥a∥ ∥b∥ ,
where ⟨a, b⟩ is the inner product of two vectors and cos (a, b) ∈ [−1, 1]. We make the convention
that cos (a, b) = cos

(
aT , bT

)
. For a matrix Y , we use Yi: to denote the i-th row of the matrix.

We let Y = JY(i1, . . . , iK)K ∈ Rp1×···×pK denote an order-K (p1, ..., pK)-dimensional tensor. The
multilinear multiplication of a tensor S ∈ Rr1×···×rK by matrices Mk ∈ Rpk×rk results in an
order-d (p1, . . . , pK)-dimensional tensor X , denoted

X = S ×1 M1 × · · · ×K MK ,

where the entries of X are defined by

X (i1, . . . , iK) =
∑

(j1,...,jK)

S(j1, . . . , jK)M1(i1, j1) · · ·MK(iK , jK).

We use Ave(·) to denote the operation of taking averages across elements and Matk(·) to denote the
unfolding operation that reshapes the tensor along mode k into a matrix. For a symmetric tensor
Y ∈ Rp×···×p, we omit the subscript and use Mat(Y) ∈ Rp×pK−1

to denote the unfolding. For two
sequences {ap}, {bp}, we denote ap ≲ bp if limp→∞ ap/bp ≤ c and ap = Ω(bp) if cbp ≤ ap ≤ Cbp,
for some constants c, C ≥ 0. We use the terms “community” and “clusters” exchangeably.

2 Model formulation
2.1 Degree-corrected tensor block model
Suppose we have an order-K data tensor Y ∈ Rp×···×p. For ease of notation, we focus on symmetric
tensors in this section; our framework easily extends to general asymmetric tensors. Assume there
exist r ≥ 2 disjoint communities among the p nodes. We represent the community assignment by
a function z : [p] 7→ [r], where z(i) = a for i-th node that belongs to the a-th community. Then,
z−1(a) = {i ∈ [p] : z(i) = a} denotes the set of nodes that belong to the a-th community, and
|z−1(a)| denotes the number of nodes in the a-th community. Let θ = (θ(1), . . . , θ(p))T denote the
degree heterogeneity for p nodes. We consider the order-K dTBM [11, 15],

Y(i1, . . . , iK) = S(z(i1), . . . , z(iK))

K∏
k=1

θik + E(i1, . . . , iK),

where S ∈ Rr×···×r is an order-K tensor collecting the block means among communities, and
E ∈ Rp×···×p is a noise tensor consisting of independent mean-zero sub-Gaussian entries with
variance bounded by σ2. The unknown parameters are z, S, and θ. The dTBM can be equivalently
written in a compact form of tensor-matrix product:

EY = S ×1 ΘM ×2 · · · ×K ΘM , (1)

where Θ = diag(θ(1), ..., θ(p)) ∈ Rp×p is a diagonal matrix, M ∈ {0, 1}p×r is the membership
matrix associated with community assignment z such that M(i, j) = 1{z(i) = j}. By definition,
each row of M has one copy of 1’s and 0’s elsewhere. Note that the discrete nature of M renders
our model (1) more challenging than Tucker decomposition. We call a tensor X an r-block tensor
with degree θ if X admits dTBM (1). Here, we give two special cases of dTBM.

Example 1 (Gaussian TBM). Let θ(i) = 1 for all i ∈ [p] and E be a noise tensor with i.i.d. N(0, σ2)
entries. Our dTBM reduces to a non-degree Gaussian TBM [25, 13], which is widely used in previous
clustering algorithms [25, 7]. The theoretical results in TBM serve as benchmarks for dTBM.
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Example 2 (Binary dTBM). Consider a K-uniform hypergraph H = (V,E), where V = [p]
collects the nodes with r disjoint communities and E collects all the K-way hyperedges. Let
Y ∈ {0, 1}p×···×p denote the adjacency tensor, where the entries encode the presence or absence
of hyperdeges among p nodes. Specifically, let Y(i1, ..., iK) = 1 if (i1, ..., iK) ∈ E, otherwise,
Y(i1, ..., iK) = 0, for all (i1, . . . , iK) ∈ [p]K . The equation (1) models EY with unknown degree
heterogeneity and subgaussianity parameter σ2 = 1/4.
Remark 1 (Comparison with non-degree models). Our dTBM uses fewer block parameters than
TBM. Let the subscripts “deg" and “non" denote quantities in the models with and without degrees,
respectively. Then, every rnon-block tensor can be represented by a degree-corrected rdeg-block tensor
with rdeg ≤ rnon. In particular, there exist tensors with rnon = p but rdeg = 1, so the reduction in r
can be dramatic from p to 1. This fact highlights the benefits of introducing degree heterogeneity in
higher-order clustering tasks.

2.2 Identifiability under angle gap condition
The goal of clustering is to estimate the partition function z from model (1). We use P to denote the
following parameter space for (z,S,θ),{
(z,S,θ) : θ ∈ Rp

+,
c1p

r
≤ |z−1(a)| ≤ c2p

r
, c3 ≤ ∥Mat(S)a:∥ ≤ c4,

∥∥θz−1(a)

∥∥
1
= |z−1(a)|, a ∈ [r]

}
, (2)

where ci > 0’s are universal constants. First, the entrywise positivity constraint on θ ∈ Rp
+ is

imposed to avoid sign ambiguity between entries in θz−1(a) and S. This constraint can be achieved
without sacrificing model flexibility, by using a slightly larger dimension of S in the factorization (1)
(see Supplement). Second, the constants c1, c2 in the |z−1(a)| bound assume the roughly balanced
size across r communities. Third, the constants c3, c4 in the magnitude of Mat(S)a: requires no
purely zero slide in S, so the core tensor S is not trivially reduced to lower rank. Lastly, the ℓ1
normalization ∥θz−1(a)∥1 = |z−1(a)| is imposed to avoid the scalar ambiguity between θz−1(a) and
S . This constraint, again, incurs no restriction to model flexibility but makes our presentation cleaner.

We first provide the identifiablity conditions for our model before estimation procedures. When
r = 1, the decomposition (1) is always unique (up to cluster label permutation) in P , because dTBM
is equivalent to the rank-1 tensor family under this case. When r ≥ 2, the Tucker rank of signal
tensor EY in (1) is bounded by, but not necessarily equal to, the number of blocks r [25]. Therefore,
one can not apply the classical identifiability conditions for low-rank tensors to dTBM. Here, we
introduce a key separation condition on the core tensor.
Assumption 1 (Angle gap). Let S = Mat(S). Assume the minimal gap between normalized rows of
S is bounded away from zero, i.e.,

∆min := min
a ̸=b∈[r]

∥∥∥∥
Sa:

∥Sa:∥
− Sb:

∥Sb:∥

∥∥∥∥ > 0. (3)

Equivalently, none of the two rows in S are parallel, i.e., maxa ̸=b∈[r] cos (Sa:, Sb:) = 1−∆2
min/2.

The quantity ∆min characterizes the non-redundancy among clusters measured by angle separation.
The definition (3) is well posed because of the lower bound on ∥Sa:∥ in (2). The following theorem
shows that the angle gap separation is sufficient and necessary for dTBM parameter identifiability.
Theorem 1 (Identifiability). Consider the dTBM with r ≥ 2. The parameterization (1) is unique in
P up to cluster label permutations, if and only if Assumption 1 holds.

The identifiability guarantee for the dTBM is more appealing than classical Tucker model. In the
Tucker model, the factor matrix M is identifiable only up to orthogonal rotations. In contrast, our
model does not suffer from rotational invariance. As we will show in Section 4, each column of the
membership matrix M can be precisely recovered under our algorithm. This property benefits the
interpretation of dTBM in practice.

3 Statistical-computational gaps for tensors of order K ≥ 3

In this section, we study the statistical and computational limits of dTBM. We propose signal-to-noise
ratio (SNR) by

SNR := ∆2
min/σ

2 = pγ , (4)
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with varying γ > 0 that quantifies different regimes of interest. We call γ the signal exponent.
Intuitively, a larger SNR, or equivalently a larger γ, benefits the clustering in the presence of noise.
With quantification (4), we consider the following parameter space,

P(γ) = P ∩ {S satisfies SNR condition (4) with γ}. (5)
Our goal is to characterize the clustering accuracy with respect to γ. Let ẑ and z be estimated and
true clustering functions in the family (2). Define the misclustering error by

ℓ(ẑ, z) =
1

p
min
π∈Π

∑

i∈[p]

1{ẑ(i) ̸= π ◦ z(i)},

where π : [r] 7→ [r] is a permutation of cluster labels, ◦ denotes the composition operation, and Π
denotes the collection of all possible permutations. The infinitum over all permutations accounts for
the ambiguity in cluster label permutation.

In Sections 3.1-3.2, we provide the lower bounds of ℓ(ẑ, z) for general Gaussian dTBMs without
symmetric assumptions. For general (asymmetric) dTBMs, we extend the parameter space (2) to
allow K clustering functions (zk)k∈[K], one for each mode. For notational simplicity, we still use
z and P(γ) for this general (asymmetric) model. All lower bounds should be interpreted as the
worst-case results across K modes.

3.1 Statistical limits
Our first main result is to show the minimax lower bound of SNR for exact recovery in dTBM.
Theorem 2 (Statistical lower bound). Consider general Gaussian dTBMs under the parameter space
P(γ) (5) with K ≥ 1. Assume r ≲ p1/3. If the signal exponent satisfies γ < −(K − 1), then, every
estimator ẑstat obeys

sup
(z,S,θ)∈P(γ)

E [pℓ(ẑstat, z)] ≥ 1.

Theorem 2 demonstrates the impossibility of exact recovery of the assignment when γ < −(K−1) in
the high-dimensional regime p→∞ for fixed r. The proof is information-theoretical, and therefore
the results apply to all statistical estimators, including but not limited to, maximum likelihood
estimation (MLE) [25, 15] and trace maximization [12]. Our derived SNR threshold −(K − 1) is
also a minimax upper bound, because MLE achieves exact recovery when γ > −(K − 1). Hence,
the boundary γstat := −(K − 1) is the critical value for statistical performance of dTBM.

3.2 Computational limits
An important ingredient to establish the computational limits is the hypergraphic planted clique
(HPC) conjecture [28, 6]. The HPC indicates the impossibility of fully recovering the planted cliques
with polynomial-time algorithm when the clique size is less than the number of vertices in the
hypergraph. The formal statement of HPC conjecture can be found in Supplement. Under the HPC
conjecture, we establish the SNR lower bound that is necessary for any polynomial-time estimator to
achieve exact clustering.
Theorem 3 (Computational lower bound). Consider general Gaussian dTBMs under the parameter
space P(γ) with K ≥ 2. Assume HPC conjecture holds. If the signal exponent γ < −K/2, then,
every polynomial-time estimator ẑcomp obeys

lim inf
p→∞

sup
(z,S,θ)∈P(γ)

E [pℓ(ẑcomp, z)] ≥ 1.

Theorem 3 indicates the impossibility of exact recovery by polynomial-time algorithms when γ <
−K/2. In Section 4, we will show the condition γ > −K/2 suffices for our proposed polynomial-
time estimator. Thus, γcomp := −K/2 is the critical value for computational performance of dTBM.
Remark 2 (Statistical-computational gaps). We have established the phase transition of exact
clustering under dTBM combing Theorems 2 and 3. Fig. 2 summarizes our results of critical SNRs.
We find that the statistical-to-computational gap emerges only for higher-order tensors with K ≥ 3.
This result reveals the intrinsic distinctions between matrix biclustering and higher-order clustering.
Remark 3 (Comparison with non-degree models). We compare our results to non-degree tensor
models. The allowance of degree heterogeneity θ makes the model more flexible, but it incurs
extra statistical and computational complexity. Fortunately, we find that the extra complexity does
not render the estimation of z qualitatively harder; see the comparison of our phase transition with
non-degree TBM [13].
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4 Polynomial-time algorithm under mild SNR
We present a two-stage clustering algorithm. The procedure takes a global-to-local approach. See
Fig. 3 for illustration. The global step finds the basin of attraction with polynomial miclustering error,
whereas the local iterations improve the initial clustering to exact recovery. Both steps are critical to
obtain a satisfactory algorithm output.

ground truth

basin of attraction

weighted higher-order initialization

angle-based iteration

Figure 3: Illustration of our global-to-local algorithm.

4.1 Weighted higher-order initialization
We start with weighted higher-order clustering algorithm as initialization. To gain insights, we use
an order-3 symmetric tensor as a working example. Consider noiseless case with X = EY and
X = Mat(X ). By model (1), for all i ∈ [p], we have

θ(i)−1Xi: = [Mat(S ×2 ΘM ×3 ΘM)]z(i): .

This implies that, all node i belonging to a-th community (i.e., z(i) = a) share the same normalized
mean vector θ(i)−1Xi:, and vice versa. Intuitively, one can apply k-means clustering to the vectors
{θ(i)−1Xi:}i∈[p], which leads to main idea of our Sub-algorithm 1. Specifically, our initialization
consists of denoising step and clustering step. The denoising step (lines 1-2 in Sub-algorithm 1)
estimates X from Y by a double projection spectral method. The double projection improves usual
matrix spectral methods in order to alleviate the noise tensor. The clustering step (lines 3-5 in
Sub-algorithm 1) performs the weighted k-means clustering. The choice of weights is to bound
the k-means objective function by the Frobenius-norm accuracy of X̂ . Unlike existing clustering
algorithm [15], we apply the clustering on the unfolded tensor X̂ rather than on the factors Û , which
relaxes the eigen-gap separation condition [10, 13]. Full procedures are provided in Sub-algorithm 1.

We now establish the misclustering error rate of initialization. We call θ is balanced, if the relative
extent of heterogeneity is comparable across clusters in that

min
a∈[r]
∥θz−1(a)∥ = (1 + o(1))max

a∈[r]
∥θz−1(a)∥. (6)

Note that, the assumption (6) does not preclude degree heterogeneity. Indeed, within each of the
clusters, the highest degree can be θ(i) = Ω(p), whereas the lowest degree can be θ(i) = O(1).
Theorem 4 (Error for weighted higher-order initialization). Consider Gaussian dTBMs under the
parameter space P and Assumption 1. Assume θ is balanced and mini∈[p] θ(i) ≥ c for some constant
c > 0. Let z(0) denote the output of Sub-algorithm 1. With probability going to 1,

ℓ(z(0), z) ≲
rKp−K/2

SNR
. (7)

Remark 4 (Comparison to previous results). For fixed SNR, our initialization error rate with K = 2
agrees with the initialization error rate O(p) in matrix models [10]. Furthermore, in the special case
of non-degree TBMs, we achieve the same initial misclassification error O(p−K/2) as in [13]. The
result demonstrates the advantage of our algorithm in achieving both accuracy and model flexibility.

Remark 5 (Failure of conventional tensor HOSVD). If we use conventional HOSVD for tensor
denoising; that is, we use Upre in place of Û in line 2, then the misclustering rate becomes O(p) for
all K ≥ 2. This rate is substantially worse than our current rate (7).

4.2 Angle-based iteration
We propose an angle-based local iteration to improve the outputs from Sub-algorithm 1. To gain
the intuition, consider an one-dimensional degree-corrected clustering problem with data vectors
xi = θ(i)sz(i) + ϵi, i ∈ [p], where si’s are known cluster centroids, θ(i)’s are unknown degrees, and
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Algorithm: Multiway spherical clustering for degree-corrected tensor block model

Sub-algorithm 1: Weighted higher-order initialization

Input: Observation Y ∈ Rp×···×p, number of cluster r, relaxation factor η > 1 in k-means clustering.
1: Compute factor matrix Upre = SVDr(Mat(Y)) and the (K−1)-mode projection Xpre = Y×1U

T
pre×2· · ·×K−1U

T
pre.

2: Compute factor matrix Û = SVDr(Mat(Xpre)) and denoised tensor X̂ = Y ×1 ÛÛT ×2 · · · ×K ÛÛT .

3: Let X̂ = Mat(X̂ ) and I0 = {i ∈ [p] : ‖X̂i:‖ = 0}. Set ẑ(i) randomly in [r] for i ∈ I0.

4: For all i ∈ Ic0 , compute normalized rows X̂s
i: := ‖X̂i:‖−1X̂i:.

5: Solve the clustering ẑ : [p]→ [r] and centroids (x̂j)j∈[rk] using weighted k-means, such that

∑

i∈Ic
0

‖X̂i:‖2‖X̂s
i: − x̂ẑ(i)‖2 ≤ η min

x̄j ,j∈[r],z̄(i),i∈Ic
0

∑

i∈Sc

‖X̂i:‖2‖X̂s
i: − x̄z̄(i)‖2.

Output: Initial clustering z(0) ← ẑ.

Sub-algorithm 2: Angle-based iteration

Input: Observation Y ∈ Rp×···×p, initialization z(0) : [p]→ [r] from Sub-algorithm 1, iteration number T .
6: for t = 0 to T − 1 do
7: Update the block tensor S(t) via S(t)(i1, ..., iK) = Ave{Y(i1, . . . , iK) : z(t)(ik) = jk, k ∈ [K]}.
8: Calculate reduced tensor Yd ∈ Rp×r×···×r via

Yd(i, a2, . . . , aK) = Ave{Y(i, i2, . . . , iK) : z(t)(ik) = ak, k 6= 1}.

9: Let Y d = Mat(Yd) and J0 = {i ∈ [p] :
∥∥Y d

i:

∥∥ = 0}. Set z(t+1)(i) randomly in [r] for i ∈ J0.

10: Let S(t) = Mat(S(t)). For all i ∈ Jc
0 update the cluster assignment by

z(i)(t+1) = arg max
a∈[r]

cos
(
Y d
i: , S

(t)
a:

)
.

11: end for
Output: Estimated clustering z(T ) ∈ [r]p.

1
z : [p] 7→ [r] is the clustering assignment of interest. The angle-based k-means algorithm estimates
the assignment z by minimizing the angle between data vectors and centroids; i.e.,

z(i) = argmax
a∈[r]

cos(xi, sa), for all i ∈ [p].

The classical Euclidean-distance based clustering [13] fails to recover z in the presence of degree
heterogeneity, even under noiseless case. In contrast, the proposed angle-based k-means achieves
accurate recovery without explicit estimation of θ. Our Sub-algorithm 2 shares the same spirit as
angle-based k-means, except that we use estimated centroids s(t)a in place of sa based on estimated
assignment in previous iterations. Full procedures for our angle-based iteration are described in
Sub-algorithm 2. The following theorem establishes the misclustering error rate of iterations.
Theorem 5 (Error for angle-based iteration). Consider the setup as in Theorem 4. Suppose r = O(1)
and SNR ≳ p−K/2 log p. Let z(t) denote the t-th iteration output in Sub-algorithm 2 with initialization
z(0) from Sub-algorithm 1. With probability going to 1, there exists a contraction parameter ρ ∈ (0, 1)
such that

ℓ(z, ẑ(t+1)) ≲ SNR−1 exp

(
−pK−1SNR

rK−1

)
︸ ︷︷ ︸

statistical error

+ ρtℓ(z, z(0)).︸ ︷︷ ︸
computational error

The iteration error is decomposed into two parts: statistical error and computational error. The
statistical error is unavoidable with noisy data regardless t, whereas the computational error decays
in an exponential rate as the number of iterations t→∞. Theorem 5 implies that, with probability
going to 1, our estimate z(T ) achieves exact recovery within polynomial iterations; more precisely,
for some permutation π ∈ Π,

z(T ) = π ◦ z, for all T ≳ log1/ρ p.

5 Numerical studies
We evaluate the performance of the weighted higher-order initialization and angle-based iteration
in this section. We report average errors and standard deviations across 30 replications in each
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experiment. Clustering accuracy is assessed by clustering error rate (CER, i.e., one minus rand
index). Note that CER between (ẑ, z) is equivalent to misclustering error ℓ(ẑ, z) up to constant
multiplications [20], and a lower CER indicates a better performance.

We generate order-3 tensors with assortative [10] core tensors to control SNR; i.e., we set Saaa = s1
for a ∈ [r] and others be s2, where s1 > s2 > 0. Let α = s1/s2. We set α close to 1 such that
1− α = o(p). In particular, we have α = 1 + Ω(pγ/2) by Assumption 1 and definition (4). Hence,
we easily adjust SNR via varying α. Note that the assortative setting is proposed for simulations,
and our algorithm is applicable for general tensors in practice. The cluster assignment z is randomly
generated with equal probability across r clusters for each mode. Without further explanation, we
generate degree heterogeneity θ from absolute normal distribution as θ(i) = |Xi|+ 1− 1/

√
2π with

|Xi| i.i.d.∼ N(0, 1), i ∈ [p] and normalize θ to satisfy (2). We set σ2 = 1 for Gaussian data.

5.1 Verification for theoretical results
The first experiment verifies statistical-computational gap described in Section 3. Consider the
Gaussian model with p = {80, 100}, r = 5. We vary γ in [−1.2,−0.4] and [−2.1,−1.4] for matrix
(K = 2) and tensor (K = 3) clustering, respectively. Note that finding MLE under dTBM is
computationally intractable. We approximate MLE using an oracle estimator; i.e., the output of
Sub-algorithm 2 initialized from true assignment. Fig. 4a shows that both our algorithm and oracle
estimator start to decrease around the critical value γstat = γcomp = −1 in matrix case. In contrast,
Fig. 4b shows a significant gap in the phase transitions between the algorithm estimator and oracle
estimator in tensor case. The oracle error rapidly decreases to 0 when γstat = −2, whereas the
algorithm estimator tends to achieve exact clustering when γcomp = −1.5. Fig. 4 confirms the
existence of the statistical-computational gap in our Theorems 2 and 3.
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Figure 4: SNR phase transitions for clustering in
dTBM with p = {80, 100}, r = 5 under (a) matrix
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Gaussian and (b) Bernoulli models.

The second experiment verifies the performance guarantees of two algorithms: (i) weighted higher-
order initialization; (ii) combined algorithm of weighted higher-order initialization and angle-based
iteration. We consider both the Gaussian and Bernoulli models with p = {80, 100}, r = 5, γ ∈
[−2.1,−1.4]. Fig. 5 shows the substantial improvement of combined algorithm over initialization,
especially under weak and intermediate signals. This phenomenon agrees with the error rates in
Theorems 4 and 5 and confirms the necessity of the local iterations.

5.2 Comparison with other methods
We compare our algorithm with following higher-order clustering methods:
• HOSVD : HOSVD on data tensor and k-means on the rows of the factor matrix;
• HOSVD+: HOSVD on data tensor and k-means on the ℓ2-normalized rows of the factor matrix;
• HLloyd: High-order Lloyd algorithm and high-order spectral clustering [13];
• SCORE: Tensor-SCORE for clustering [15];
Among the four alternative algorithms, the SCORE is the closest method to ours. We set the tuning
parameters of SCORE as in previous literature [15]. The methods SCORE and HOSVD+ are designed
for degree models, whereas HOSVD and HLloyd are designed for non-degree models. We conduct two
experiments to assess impacts of (i) signal strength and (ii) degree heterogeneity, based on Gaussian
and Bernoulli models with p = 100, r = 5. Our algorithm is referred to as dTBM in the comparison.
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We investigate the effects of signal to clustering performance by varying γ ∈ [−1.5,−1.1]. Fig. 6
shows the consistent outperformance of our method dTBM among all algorithms. The sub-optimality
of SCORE and HOSVD+ indicates the necessity of local iterations on the clustering. Furthermore,
Fig. 6 shows the inadequacy of non-degree algorithms in the presence of mild degree heterogeneity.
The only exception is the slightly better performance of HLloyd over HOSVD+ under Gaussian
model. However, we find the advantage of HLloyd disappears with higher degree heterogeneity (see
extra simulation results in Supplement). The experiment demonstrates the benefits of addressing
heterogeneity in higher-order clustering tasks.
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The last experiment investigates the effects of degree heterogeneity to clustering performance. We fix
the signal exponent γ = −1.2 and vary the extent of degree heterogeneity. In this experiment, we
generate θ from Pareto distribution prior to normalization. The density function of Pareto distribution
is f(x|a, b) = abax−(a+1)1{x ≥ b}, where a is called shape parameter. We vary a ∈ [3, 6] and
choose b such that E[X] = a(a−1)−1b = 1 for X following Pareto(a, b). Note that a smaller a leads
to a larger variance in θ and hence a larger degree heterogeneity. Fig. 7 demonstrates the stability of
degree-corrected algorithms (dTBM, SCORE, HOSVD+) over the entire range of degree heterogeneity
under consideration. In contrast, non-degree algorithms (HLloyd, HOSVD) show poor performance
with large heterogeneity, especially in Bernoulli cases. This experiment, again, highlights the benefit
of addressing degree heterogeneity in higher-order clustering.

5.3 Peru Legislation data analysis
We consider the legislation networks in the Congress of the Republic of Peru [19]. Because of the
frequent political power shifts in the Peruvian Congress during 2006-2011, we choose to focus on the
data for the first half of 2006-2007 year. The dataset records the co-sponsorship of 116 legislators
from top 5 parties and 802 bill proposals. We reconstruct legislation network as an order-3 binary
tensor Y ∈ {0, 1}116×116×116, where Yijk = 1 if the legislators (i, j, k) have sponsored the same
bill, and Yijk = 0 otherwise. The true party affiliations of legislators are provided and serve as ground
truth. We apply various higher-order clustering methods to Y with r = 5. Tab. 2 shows that our dTBM
achieves the best performance compared to others. The second best method is the two-stage algorithm
HLloyd, followed by the spectral methods SCORE and HOSVD+. This result is consistent with our
simulations under strong signal and moderate degree heterogeneity. The comparison suggests that
our method dTBM is more appealing in real-world applications.

Method dTBM HOSVD HOSVD+ HLloyd SCORE
CER 0.116 0.22 0.213 0.149 0.199

Table 2: Clustering errors (measured by CER) for various methods with Peru Legislation dataset.

6 Conclusion
We have developed a general degree-corrected tensor block model with a two-step angle-based
polynomial-times algorithm. We have, for the first time, characterized the statistical and computational
behaviors of the degree-corrected tensor block model under different signal-to-noise ratio regimes.
Simulations and real data analysis confirm the potential of our method for practical applications.
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