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Introduction

We propose a novel spectral tensor layer for model-
parallel deep neural networks, which can be trained
in the spectrum domain [1][2]. A spectral tensor neu-
ral network consists of a number of small, weak sub-
networks, which can be trained in an asynchronous
parallel manner. The final output is the ensem-
ble of the subnetworks’ outputs, e.g., average over
all subnetworks, or weighted average of top-k sub-
networks. Compared with conventional neural net-
works, spectral tensor neural networks have intrin-
sical data parallelism as well as model parallelism,
which is very suitable for distributed training, and the
ensemble method performs remarkably well.

Spectral Tensor Neural Network

Data Preprocessing: Assume that the original input
has size H × W and we split it into B independent
spectrals as follows:
• Data tensor: Reorganize the data into a tensor of
size H ′ ×W ′ ×B, where H ′W ′B = HW .

• Spectrum tensor: Perform discrete cosine trans-
form (DCT) along the third dimension of the data
tensor to obtain the spectrum tensor with B spec-
trals (frontal slices). Each frontal slice is a spectral
of size H ′ ×W ′.
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Fig. 1. Data preprocessing.

Training Process: Train B subnetworks indepen-
dently with the B spectrals and the corresponding
labels, respectively, using standard packages.
Ensemble Method: In inference stage, we split a
sample into B spectrals and feed them into the B
subnetworks correspondingly. As shown in Fig. 3,
we ensemble the B outputs using weighted averag-
ing:

y =

B∑
i=1

wiyi, (1)

where y is the output of the spectral tensor neural
network, yi and wi are the component subnetworks’
output and corresponding weight, i = 1, 2, ..., B.
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Fig. 2. Training stage and inference stage of
spectral tensor neural networks.

Spectral tensor layer brings following advantages:
• Data parallelism and Model parallelism: The B
spectrals contain the information of different fre-
quencies, making it reasonable to separate the
spectrals and independently train B subnetworks
for the B spectrals, respectively.

• Distributed training: The B separatable spectrals
can be placed at B nodes with the corresponding
subnetwork.

• Asynchronous parallelism: There is no need to
mix the intermediate information at different fre-
quencies. Therefore, there is no communication
overhead among the parallel subnetworks during
the training process.

MNIST Data Set

Data set: MNIST handwritten digit classification data
set [3]. Each image has size 28× 28.
Preprocessing: Each image is preprocessed into a
spectrum tensor of size 7 × 7 × 16. The spectrum
tensor is split into 16 spectrals where each spectral is
of size 7× 7.
Experiment Settings:
• Independently train 16 subnetworks with 8 fully con-
nected layers, of which the number of neurons in
each hidden layer is 49.

• Optimizer is Adam and learning rate is 1× 10−3.
• Set the batch size as 128.

Results: As given in Table 1, we measure the perfor-
mance by computing the classification accuracy on
the test data set. As shown in Fig. 3, we record the
loss of ensemble case and subnetworks.

Fig. 3. Test loss on MNIST data set.

ImageNet Data Set

Data set: ImageNet data set (ILSVRC2012) [4].
Each image has size 224× 224× 3.
Preprocessing: Each image is preprocessed into a
spectrum tensor of size 56×56×16×3. The spectrum
tensor is split into 16 spectrals where each spectral is
of size 56× 56× 3.
Experiment Settings:
• Independently train 16 subnetworks with 12 convo-
lution layers.

• Optimizer is Adam, the initial learning rate is 0.1
and we adjust the learning rate periodically.

• Set the batch size as 1024.
Results: As given in Table 1, we got an accuracy
of 61.24% in ensemble method, which is remarkably
better than 56.82%, the highest accuracy of the sub-
networks.

CIFAR-10 Data Set

Data set: CIFAR-10 classification data set [5].
Each image has size 32× 32× 3.
Preprocessing: Each image is preprocessed into
a spectrum tensor of size 16 × 16 × 4 × 3. The
spectrum tensor is split into 4 spectrals where each
spectral is of size 16× 16× 3.
Experiment Settings:
• Independently train 4 subnetworks with 10 convo-
lution layers.

• Optimizer is Adam and learning rate is 1× 10−3.
• Set the batch size as 128.

Results: As given in Table 1, we measure the per-
formance by computing the classification accuracy
on the test data set. And as shown in Fig. 4, we
record the loss of ensemble case and subnetworks.

Fig. 4. Test loss on CIFAR-10 data set.

Experiment Results

We summarize the mean and highest accuracy of
the component subnetworks and the accuracy of
our ensemble method in Table 1, namely Mean
Acc., Highest Acc. and Acc. Ens., respectively.
Baseline is the accuracy of conventional neural
networks. The conventional neural networks have
the same layer as the component subnetworks but
have more parameters because it deals with input
of larger size.

Table 1. Experiment results.
Data sets Mean

Acc.
Highest
Acc.

Ens.
Acc.

Baseline

MNIST [3] 82.74% 96.32% 98.36% 98.71%
CIFAR-10
[5]

81.67% 85.54% 89.64% 91.86%

ImageNet
[4]

45.48% 56.82% 61.24% 62.62%

Conclusions

In this poster, we propose spectral tensor layer
for model-parallel deep neural networks. By per-
forming DCT on the data, we can split the data
to achieve data parallelism as well as model par-
allelism. The great potential for distributed training
without communication makes spectral tensor layer
for neural networks very promising. Based on that,
we’ve shown the ensemble result is remarkably bet-
ter than the best result of the component subnet-
works.
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